
-
Previous Article
The BGK approximation of kinetic models for traffic
- KRM Home
- This Issue
-
Next Article
Stochastic Cucker-Smale flocking dynamics of jump-type
On Fokker-Planck equations with In- and Outflow of Mass
1. | Friedrich-Alexander-Universität Erlangen-Nürnberg, Department Mathematik, Cauerstr. 11, 91058 Erlangen, Germany |
2. | Westfälische Wilhelms-Universität Münster, Institut für Angewandte Mathematik: Analysis und Numerik, Orleans-Ring 10, 48149 Münster, Germany |
3. | Technische Universität Chemnitz, Fakultät für Mathematik, Reichenhainer Str. 41, 09126 Chemnitz, Germany |
Motivated by modeling transport processes in the growth of neurons, we present results on (nonlinear) Fokker-Planck equations where the total mass is not conserved. This is either due to in- and outflow boundary conditions or to spatially distributed reaction terms. We are able to prove exponential decay towards equilibrium using entropy methods in several situations. As there is no conservation of mass it is difficult to exploit the gradient flow structure of the differential operator which renders the analysis more challenging. In particular, classical logarithmic Sobolev inequalities are not applicable any more. Our analytic results are illustrated by extensive numerical studies.
References:
[1] |
A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani,
Entropies and equilibria of many-particle systems: An essay on recent research, Monatsh. Math, 142 (2004), 35-43.
doi: 10.1007/s00605-004-0239-2. |
[2] |
M. Burger, M. Di Francesco and Y. Dolak-Struss,
The keller–segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM Journal on Mathematical Analysis, 38 (2006), 1288-1315.
doi: 10.1137/050637923. |
[3] |
M. Burger and J.-F. Pietschmann,
Flow characteristics in a crowded transport model, Nonlinearity, 29 (2016), 3528-3550.
doi: 10.1088/0951-7715/29/11/3528. |
[4] |
J. Carrillo, P. Laurenccot and J. Rosado,
Fermi–Dirac–Fokker–Planck equation: Well-posedness & long-time asymptotics, Journal of Differential Equations, 247 (2009), 2209-2234.
doi: 10.1016/j.jde.2009.07.018. |
[5] |
J. A. Carrillo and J. L. Vázquez,
Fine asymptotics for fast diffusion equations, Communications in Partial Differential Equations, 28 (2003), 1023-1056.
doi: 10.1081/PDE-120021185. |
[6] |
M. Del Pino and J. Dolbeault,
Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, Journal de Mathématiques Pures et Appliquées, 81 (2002), 847-875.
doi: 10.1016/S0021-7824(02)01266-7. |
[7] |
L. Desvillettes and C. Villani,
On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Inventiones Mathematicae, 159 (2005), 245-316.
doi: 10.1007/s00222-004-0389-9. |
[8] |
L. Desvillettes and K. Fellner,
Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl, 319 (2006), 157-176.
doi: 10.1016/j.jmaa.2005.07.003. |
[9] |
L. Desvillettes and C. Villani,
On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Communications on Pure and Applied Mathematics, 54 (2001), 1-42.
doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[10] |
M. Dreher and A. Jüngel,
Compact families of piecewise constant functions in lp (0, t; b), Nonlinear Analysis, Theory, Methods and Applications, 75 (2012), 3072-3077.
doi: 10.1016/j.na.2011.12.004. |
[11] |
J. Droniou and J.-L. Vázquez,
Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009), 413-434.
doi: 10.1007/s00526-008-0189-y. |
[12] |
C. M. Elliott and H. Garcke,
On the cahn–hilliard equation with degenerate mobility, Siam Journal on Mathematical Analysis, 27 (1996), 404-423.
doi: 10.1137/S0036141094267662. |
[13] |
L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010.
doi: 10.1090/gsm/019. |
[14] |
W. Feller,
The parabolic differential equations and the associated semi-groups of transformations, Annals of Mathematics, 55 (1952), 468-519.
doi: 10.2307/1969644. |
[15] |
K. Fellner and M. Kniely, Uniform convergence to equilibrium for a family of drift-diffusion models with trap-assisted recombination and the limiting shockley–read–hall model, arXiv preprint, arXiv: 1703.02881, 2017. |
[16] |
K. Fellner, L. Neumann and C. Schmeiser,
Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatshefte Für Mathematik, 141 (2004), 289-299.
doi: 10.1007/s00605-002-0058-2. |
[17] |
S. N. Gomes, A. M. Stuart and M.-T. Wolfram, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM J. Appl. Math., 79 (2019), 1475–1500, arXiv1809.08046.
doi: 10.1137/18M1215980. |
[18] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, London, Melbourne, 1985. |
[19] |
J. Haskovec, S. Hittmeir, P. Markowich and A. Mielke,
Decay to equilibrium for energy-reaction-diffusion systems, SIAM J. Math. Anal, 50 (2018), 1037-1075.
doi: 10.1137/16M1062065. |
[20] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the fokker–planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[21] |
D. Le and H. Smith,
Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains, Journal of Mathematical Analysis and Applications, 275 (2002), 208-221.
doi: 10.1016/S0022-247X(02)00314-1. |
[22] |
M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction–diffusion systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120346, 28pp.
doi: 10.1098/rsta.2012.0346. |
[23] |
P. A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, Mat. Contemp., 19 (2000), 1–29. Ⅵ Workshop on Partial Differential Equations, Part Ⅱ (Rio de Janeiro, 1999). |
[24] |
P. K. Mattila and P. Lappalainen,
Filopodia: Molecular architecture and cellular functions, Nature Reviews Molecular Cell Biology, 9 (2008), 446-454.
doi: 10.1038/nrm2406. |
[25] |
A. Mielke,
A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.
doi: 10.1088/0951-7715/24/4/016. |
[26] |
T. Namba, Y. Funahashi, S. Nakamuta, C. Xu, T. Takano and K. Kaibuchi,
Extracellular and intracellular signaling for neuronal polarity, Physiological Reviews, 95 (2015), 995-1024.
doi: 10.1152/physrev.00025.2014. |
[27] |
I. Naoyuki, T. Michinori and S. Yuichi, Systems biology of symmetry breaking during neuronal polarity formation, Developmental Neurobiology, 71 584–593. |
[28] |
F. Otto,
The geometry of dissipative evolution equations: The porous medium equation, Communications in Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[29] |
D. Roland, On poincaré, friedrichs and korns inequalities on domains and hypersurfaces, arXiv preprint, arXiv: 1504.01677, 2015. |
[30] |
T. Takano, C. Xu, Y. Funahashi, T. Namba and K. Kaibuchi,
Neuronal polarization, Development, 142 (2015), 2088-2093.
doi: 10.1242/dev.114454. |
show all references
References:
[1] |
A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani and C. Villani,
Entropies and equilibria of many-particle systems: An essay on recent research, Monatsh. Math, 142 (2004), 35-43.
doi: 10.1007/s00605-004-0239-2. |
[2] |
M. Burger, M. Di Francesco and Y. Dolak-Struss,
The keller–segel model for chemotaxis with prevention of overcrowding: Linear vs. nonlinear diffusion, SIAM Journal on Mathematical Analysis, 38 (2006), 1288-1315.
doi: 10.1137/050637923. |
[3] |
M. Burger and J.-F. Pietschmann,
Flow characteristics in a crowded transport model, Nonlinearity, 29 (2016), 3528-3550.
doi: 10.1088/0951-7715/29/11/3528. |
[4] |
J. Carrillo, P. Laurenccot and J. Rosado,
Fermi–Dirac–Fokker–Planck equation: Well-posedness & long-time asymptotics, Journal of Differential Equations, 247 (2009), 2209-2234.
doi: 10.1016/j.jde.2009.07.018. |
[5] |
J. A. Carrillo and J. L. Vázquez,
Fine asymptotics for fast diffusion equations, Communications in Partial Differential Equations, 28 (2003), 1023-1056.
doi: 10.1081/PDE-120021185. |
[6] |
M. Del Pino and J. Dolbeault,
Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, Journal de Mathématiques Pures et Appliquées, 81 (2002), 847-875.
doi: 10.1016/S0021-7824(02)01266-7. |
[7] |
L. Desvillettes and C. Villani,
On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation, Inventiones Mathematicae, 159 (2005), 245-316.
doi: 10.1007/s00222-004-0389-9. |
[8] |
L. Desvillettes and K. Fellner,
Exponential decay toward equilibrium via entropy methods for reaction-diffusion equations, J. Math. Anal. Appl, 319 (2006), 157-176.
doi: 10.1016/j.jmaa.2005.07.003. |
[9] |
L. Desvillettes and C. Villani,
On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems: The linear Fokker-Planck equation, Communications on Pure and Applied Mathematics, 54 (2001), 1-42.
doi: 10.1002/1097-0312(200101)54:1<1::AID-CPA1>3.0.CO;2-Q. |
[10] |
M. Dreher and A. Jüngel,
Compact families of piecewise constant functions in lp (0, t; b), Nonlinear Analysis, Theory, Methods and Applications, 75 (2012), 3072-3077.
doi: 10.1016/j.na.2011.12.004. |
[11] |
J. Droniou and J.-L. Vázquez,
Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions, Calc. Var. Partial Differential Equations, 34 (2009), 413-434.
doi: 10.1007/s00526-008-0189-y. |
[12] |
C. M. Elliott and H. Garcke,
On the cahn–hilliard equation with degenerate mobility, Siam Journal on Mathematical Analysis, 27 (1996), 404-423.
doi: 10.1137/S0036141094267662. |
[13] |
L. C. Evans, Partial Differential Equations, volume 19 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, second edition, 2010.
doi: 10.1090/gsm/019. |
[14] |
W. Feller,
The parabolic differential equations and the associated semi-groups of transformations, Annals of Mathematics, 55 (1952), 468-519.
doi: 10.2307/1969644. |
[15] |
K. Fellner and M. Kniely, Uniform convergence to equilibrium for a family of drift-diffusion models with trap-assisted recombination and the limiting shockley–read–hall model, arXiv preprint, arXiv: 1703.02881, 2017. |
[16] |
K. Fellner, L. Neumann and C. Schmeiser,
Convergence to global equilibrium for spatially inhomogeneous kinetic models of non-micro-reversible processes, Monatshefte Für Mathematik, 141 (2004), 289-299.
doi: 10.1007/s00605-002-0058-2. |
[17] |
S. N. Gomes, A. M. Stuart and M.-T. Wolfram, Parameter estimation for macroscopic pedestrian dynamics models from microscopic data, SIAM J. Appl. Math., 79 (2019), 1475–1500, arXiv1809.08046.
doi: 10.1137/18M1215980. |
[18] |
P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, London, Melbourne, 1985. |
[19] |
J. Haskovec, S. Hittmeir, P. Markowich and A. Mielke,
Decay to equilibrium for energy-reaction-diffusion systems, SIAM J. Math. Anal, 50 (2018), 1037-1075.
doi: 10.1137/16M1062065. |
[20] |
R. Jordan, D. Kinderlehrer and F. Otto,
The variational formulation of the fokker–planck equation, SIAM Journal on Mathematical Analysis, 29 (1998), 1-17.
doi: 10.1137/S0036141096303359. |
[21] |
D. Le and H. Smith,
Strong positivity of solutions to parabolic and elliptic equations on nonsmooth domains, Journal of Mathematical Analysis and Applications, 275 (2002), 208-221.
doi: 10.1016/S0022-247X(02)00314-1. |
[22] |
M. Liero and A. Mielke, Gradient structures and geodesic convexity for reaction–diffusion systems, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371 (2013), 20120346, 28pp.
doi: 10.1098/rsta.2012.0346. |
[23] |
P. A. Markowich and C. Villani, On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis, Mat. Contemp., 19 (2000), 1–29. Ⅵ Workshop on Partial Differential Equations, Part Ⅱ (Rio de Janeiro, 1999). |
[24] |
P. K. Mattila and P. Lappalainen,
Filopodia: Molecular architecture and cellular functions, Nature Reviews Molecular Cell Biology, 9 (2008), 446-454.
doi: 10.1038/nrm2406. |
[25] |
A. Mielke,
A gradient structure for reaction–diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346.
doi: 10.1088/0951-7715/24/4/016. |
[26] |
T. Namba, Y. Funahashi, S. Nakamuta, C. Xu, T. Takano and K. Kaibuchi,
Extracellular and intracellular signaling for neuronal polarity, Physiological Reviews, 95 (2015), 995-1024.
doi: 10.1152/physrev.00025.2014. |
[27] |
I. Naoyuki, T. Michinori and S. Yuichi, Systems biology of symmetry breaking during neuronal polarity formation, Developmental Neurobiology, 71 584–593. |
[28] |
F. Otto,
The geometry of dissipative evolution equations: The porous medium equation, Communications in Partial Differential Equations, 26 (2001), 101-174.
doi: 10.1081/PDE-100002243. |
[29] |
D. Roland, On poincaré, friedrichs and korns inequalities on domains and hypersurfaces, arXiv preprint, arXiv: 1504.01677, 2015. |
[30] |
T. Takano, C. Xu, Y. Funahashi, T. Namba and K. Kaibuchi,
Neuronal polarization, Development, 142 (2015), 2088-2093.
doi: 10.1242/dev.114454. |










[1] |
Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215 |
[2] |
Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028 |
[3] |
Hongjie Dong, Yan Guo, Timur Yastrzhembskiy. Kinetic Fokker-Planck and Landau equations with specular reflection boundary condition. Kinetic and Related Models, 2022, 15 (3) : 467-516. doi: 10.3934/krm.2022003 |
[4] |
John W. Barrett, Endre Süli. Existence of global weak solutions to Fokker-Planck and Navier-Stokes-Fokker-Planck equations in kinetic models of dilute polymers. Discrete and Continuous Dynamical Systems - S, 2010, 3 (3) : 371-408. doi: 10.3934/dcdss.2010.3.371 |
[5] |
Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017 |
[6] |
Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016 |
[7] |
Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485 |
[8] |
José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401 |
[9] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[10] |
Krunal B. Kachhia. Comparative study of fractional Fokker-Planck equations with various fractional derivative operators. Discrete and Continuous Dynamical Systems - S, 2020, 13 (3) : 741-754. doi: 10.3934/dcdss.2020041 |
[11] |
Luis Almeida, Federica Bubba, Benoît Perthame, Camille Pouchol. Energy and implicit discretization of the Fokker-Planck and Keller-Segel type equations. Networks and Heterogeneous Media, 2019, 14 (1) : 23-41. doi: 10.3934/nhm.2019002 |
[12] |
Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056 |
[13] |
Zeinab Karaki. Trend to the equilibrium for the Fokker-Planck system with an external magnetic field. Kinetic and Related Models, 2020, 13 (2) : 309-344. doi: 10.3934/krm.2020011 |
[14] |
Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008 |
[15] |
Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845 |
[16] |
Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250 |
[17] |
Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028 |
[18] |
Yuan Gao, Guangzhen Jin, Jian-Guo Liu. Inbetweening auto-animation via Fokker-Planck dynamics and thresholding. Inverse Problems and Imaging, 2021, 15 (5) : 843-864. doi: 10.3934/ipi.2021016 |
[19] |
Guillaume Bal, Benjamin Palacios. Pencil-beam approximation of fractional Fokker-Planck. Kinetic and Related Models, 2021, 14 (5) : 767-817. doi: 10.3934/krm.2021024 |
[20] |
Alin Pogan, Kevin Zumbrun. Stable manifolds for a class of singular evolution equations and exponential decay of kinetic shocks. Kinetic and Related Models, 2019, 12 (1) : 1-36. doi: 10.3934/krm.2019001 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]