June  2020, 13(3): 623-651. doi: 10.3934/krm.2020021

Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes equations in the whole domain

1. 

Institute of New Media and Communications, Seoul National University, Seoul 08826, Republic of Korea

2. 

College of Mathematics and Physics, Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding author: Weiyuan Zou

Received  December 2019 Revised  February 2020 Published  March 2020

Fund Project: The second author Weiyuan Zou is supported by the Fundamental Research Funds for the Central Universities ZY1937

We study local existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker–Smale (in short TCS) model coupled with incompressible Navier–Stokes (NS) equations in the whole space. The coupled system consists of the kinetic TCS equation for particle ensemble and the incompressible NS equations for a fluid via a drag force. For the strong solution, we investigate the blow-up mechanism for the coupled system, and we also study the global existence of a weak solution in the whole space.

Citation: Jeongho Kim, Weiyuan Zou. Solvability and blow-up criterion of the thermomechanical Cucker-Smale-Navier-Stokes equations in the whole domain. Kinetic and Related Models, 2020, 13 (3) : 623-651. doi: 10.3934/krm.2020021
References:
[1]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid,, Nonlinearity, 25 (2012), 1155-1177.  doi: 10.1088/0951-7715/25/4/1155.

[2]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Discrete and Continuous Dynamical System, 34 (2014), 4419-4458.  doi: 10.3934/dcds.2014.34.4419.

[3]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system, J. Differ. Equat., 257 (2014), 2225-2255.  doi: 10.1016/j.jde.2014.05.035.

[4]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Global existence of strong solutions to the Cucker-Smale-Stokes system, J. Math. Fluid Mech., 18 (2016), 381-396.  doi: 10.1007/s00021-015-0237-2.

[5]

C. BarangerL. BoudinP.-E. Jabin and S. Mancini, A modeling of biospray for the upper airways, ESAIM Proc., 14 (2005), 41-47. 

[6]

C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equation in the context of sprays: the local-in-time, classical solutions, J. Hyperbolic Differ. Equ., 3 (2006), 1-26.  doi: 10.1142/S0219891606000707.

[7]

L. BoudinL. DesvillettesC. Grandmont and A. Moussa, Global existence of solution for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, 22 (2009), 1247-1271. 

[8]

J. A. CarrilloY.-P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces,, Ann. I. H. Poincare-AN., 33 (2016), 273-307.  doi: 10.1016/j.anihpc.2014.10.002.

[9]

Y.-P. Choi, Large-time behavior for the Vlasov/compressible Navier-Stokes equations,, J. Math. Phys., 57 (2016), 071501, 13pp. doi: 10.1063/1.4955026.

[10]

Y.-P. Choi and J. Lee, Global existence of weak and strong solutions to Cucker-Smale-Navier-Stokes equations in $ \mathbb R^2$, Nonlinear Analysis: Real World Applications, 27 (2016), 158-182.  doi: 10.1016/j.nonrwa.2015.07.013.

[11]

Y.-P. Choi and B. Kwon, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015), 3309-3336.  doi: 10.1088/0951-7715/28/9/3309.

[12]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[13]

Y.-P. ChoiS.-Y. HaJ. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.  doi: 10.1088/1361-6544/aafaae.

[14]

Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, J. Math. Fluid Mech., 22 (2020), Art. 4, 34 pp. doi: 10.1007/s00021-019-0466-x.

[15]

J.-G. DongS.-Y. HaD. Kim and J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.  doi: 10.1016/j.jde.2018.08.034.

[16]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.  doi: 10.1007/BF03167396.

[17]

S.-Y. HaJ. KimC. H. MinT. Ruggeri and X. Zhang, A global existence of classical solutions to the hydrodynamic Cucker-Smale model in presence of a temperature field, Anal. Appl., 16 (2018), 757-805.  doi: 10.1142/S0219530518500033.

[18]

S.-Y. HaJ. KimC. H. MinT. Ruggeri and X. Zhang, Uniform stability and mean-field limit of a thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.  doi: 10.1090/qam/1517.

[19]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker–Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.

[20]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.

[21]

F. LiY. Mu and D. Wang, Strong solutions to the compressible Navier-stokes-Vlasov-Fokker-Plank equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.  doi: 10.1137/15M1053049.

[22]

J. Mathiaud, Local smooth solutions of a thin spray model with collisions, Math. Models Methods Appl. Sci., 20 (2010), 191-221.  doi: 10.1142/S0218202510004192.

[23]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Plank/Navier-Stokes system of equations,, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.  doi: 10.1142/S0218202507002194.

[24]

P. O'Rourke, Collective Drop Effects on Vaporizing Liquid Sprays, Princeton University, Princeton, NJ, 1981.

[25]

W. E. Ranz and W. R. Marshall, Evaporization from drops, part Ⅰ-Ⅱ, Chem. Eng. Prog., 48 (1952), 141-180. 

[26]

I. VinkovicC. AguirreS. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow, Int. J. Multiph. Flow, 32 (2006), 344-364. 

[27]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

[28]

D. Wang and C. Yu, Global weak solutions to the inhomogeneous Navier-Stokes-Vlasov equations, J. Differential Equations, 259 (2014), 3976-4008.  doi: 10.1016/j.jde.2015.05.016.

[29]

C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293.  doi: 10.1016/j.matpur.2013.01.001.

show all references

References:
[1]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid,, Nonlinearity, 25 (2012), 1155-1177.  doi: 10.1088/0951-7715/25/4/1155.

[2]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Discrete and Continuous Dynamical System, 34 (2014), 4419-4458.  doi: 10.3934/dcds.2014.34.4419.

[3]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system, J. Differ. Equat., 257 (2014), 2225-2255.  doi: 10.1016/j.jde.2014.05.035.

[4]

H.-O. BaeY.-P. ChoiS.-Y. Ha and M.-J. Kang, Global existence of strong solutions to the Cucker-Smale-Stokes system, J. Math. Fluid Mech., 18 (2016), 381-396.  doi: 10.1007/s00021-015-0237-2.

[5]

C. BarangerL. BoudinP.-E. Jabin and S. Mancini, A modeling of biospray for the upper airways, ESAIM Proc., 14 (2005), 41-47. 

[6]

C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equation in the context of sprays: the local-in-time, classical solutions, J. Hyperbolic Differ. Equ., 3 (2006), 1-26.  doi: 10.1142/S0219891606000707.

[7]

L. BoudinL. DesvillettesC. Grandmont and A. Moussa, Global existence of solution for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, 22 (2009), 1247-1271. 

[8]

J. A. CarrilloY.-P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces,, Ann. I. H. Poincare-AN., 33 (2016), 273-307.  doi: 10.1016/j.anihpc.2014.10.002.

[9]

Y.-P. Choi, Large-time behavior for the Vlasov/compressible Navier-Stokes equations,, J. Math. Phys., 57 (2016), 071501, 13pp. doi: 10.1063/1.4955026.

[10]

Y.-P. Choi and J. Lee, Global existence of weak and strong solutions to Cucker-Smale-Navier-Stokes equations in $ \mathbb R^2$, Nonlinear Analysis: Real World Applications, 27 (2016), 158-182.  doi: 10.1016/j.nonrwa.2015.07.013.

[11]

Y.-P. Choi and B. Kwon, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015), 3309-3336.  doi: 10.1088/0951-7715/28/9/3309.

[12]

F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.  doi: 10.1109/TAC.2007.895842.

[13]

Y.-P. ChoiS.-Y. HaJ. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.  doi: 10.1088/1361-6544/aafaae.

[14]

Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, J. Math. Fluid Mech., 22 (2020), Art. 4, 34 pp. doi: 10.1007/s00021-019-0466-x.

[15]

J.-G. DongS.-Y. HaD. Kim and J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.  doi: 10.1016/j.jde.2018.08.034.

[16]

K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.  doi: 10.1007/BF03167396.

[17]

S.-Y. HaJ. KimC. H. MinT. Ruggeri and X. Zhang, A global existence of classical solutions to the hydrodynamic Cucker-Smale model in presence of a temperature field, Anal. Appl., 16 (2018), 757-805.  doi: 10.1142/S0219530518500033.

[18]

S.-Y. HaJ. KimC. H. MinT. Ruggeri and X. Zhang, Uniform stability and mean-field limit of a thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.  doi: 10.1090/qam/1517.

[19]

S.-Y. HaJ. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker–Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.  doi: 10.1137/17M111064X.

[20]

S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397-1425.  doi: 10.1007/s00205-016-1062-3.

[21]

F. LiY. Mu and D. Wang, Strong solutions to the compressible Navier-stokes-Vlasov-Fokker-Plank equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.  doi: 10.1137/15M1053049.

[22]

J. Mathiaud, Local smooth solutions of a thin spray model with collisions, Math. Models Methods Appl. Sci., 20 (2010), 191-221.  doi: 10.1142/S0218202510004192.

[23]

A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Plank/Navier-Stokes system of equations,, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.  doi: 10.1142/S0218202507002194.

[24]

P. O'Rourke, Collective Drop Effects on Vaporizing Liquid Sprays, Princeton University, Princeton, NJ, 1981.

[25]

W. E. Ranz and W. R. Marshall, Evaporization from drops, part Ⅰ-Ⅱ, Chem. Eng. Prog., 48 (1952), 141-180. 

[26]

I. VinkovicC. AguirreS. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow, Int. J. Multiph. Flow, 32 (2006), 344-364. 

[27]

T. VicsekA. CzirókE. Ben-JacobI. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.  doi: 10.1103/PhysRevLett.75.1226.

[28]

D. Wang and C. Yu, Global weak solutions to the inhomogeneous Navier-Stokes-Vlasov equations, J. Differential Equations, 259 (2014), 3976-4008.  doi: 10.1016/j.jde.2015.05.016.

[29]

C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293.  doi: 10.1016/j.matpur.2013.01.001.

[1]

Yinghua Li, Shijin Ding, Mingxia Huang. Blow-up criterion for an incompressible Navier-Stokes/Allen-Cahn system with different densities. Discrete and Continuous Dynamical Systems - B, 2016, 21 (5) : 1507-1523. doi: 10.3934/dcdsb.2016009

[2]

Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637

[3]

Moon-Jin Kang, Seung-Yeal Ha, Jeongho Kim, Woojoo Shim. Hydrodynamic limit of the kinetic thermomechanical Cucker-Smale model in a strong local alignment regime. Communications on Pure and Applied Analysis, 2020, 19 (3) : 1233-1256. doi: 10.3934/cpaa.2020057

[4]

Xin Zhong. A blow-up criterion of strong solutions to two-dimensional nonhomogeneous micropolar fluid equations with vacuum. Discrete and Continuous Dynamical Systems - B, 2020, 25 (12) : 4603-4615. doi: 10.3934/dcdsb.2020115

[5]

Young-Pil Choi, Seung-Yeal Ha, Jeongho Kim. Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication. Networks and Heterogeneous Media, 2018, 13 (3) : 379-407. doi: 10.3934/nhm.2018017

[6]

Anthony Suen. Existence and a blow-up criterion of solution to the 3D compressible Navier-Stokes-Poisson equations with finite energy. Discrete and Continuous Dynamical Systems, 2020, 40 (3) : 1775-1798. doi: 10.3934/dcds.2020093

[7]

Jochen Merker. Strong solutions of doubly nonlinear Navier-Stokes equations. Conference Publications, 2011, 2011 (Special) : 1052-1060. doi: 10.3934/proc.2011.2011.1052

[8]

Lining Ru, Xiaoping Xue. Flocking of Cucker-Smale model with intrinsic dynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6817-6835. doi: 10.3934/dcdsb.2019168

[9]

Mauro Rodriguez Cartabia. Cucker-Smale model with time delay. Discrete and Continuous Dynamical Systems, 2022, 42 (5) : 2409-2432. doi: 10.3934/dcds.2021195

[10]

Peter E. Kloeden, José Valero. The Kneser property of the weak solutions of the three dimensional Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2010, 28 (1) : 161-179. doi: 10.3934/dcds.2010.28.161

[11]

Lihuai Du, Ting Zhang. Local and global strong solution to the stochastic 3-D incompressible anisotropic Navier-Stokes equations. Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4745-4765. doi: 10.3934/dcds.2018209

[12]

Yan Jia, Xingwei Zhang, Bo-Qing Dong. Remarks on the blow-up criterion for smooth solutions of the Boussinesq equations with zero diffusion. Communications on Pure and Applied Analysis, 2013, 12 (2) : 923-937. doi: 10.3934/cpaa.2013.12.923

[13]

Jingrui Wang, Keyan Wang. Almost sure existence of global weak solutions to the 3D incompressible Navier-Stokes equation. Discrete and Continuous Dynamical Systems, 2017, 37 (9) : 5003-5019. doi: 10.3934/dcds.2017215

[14]

Ming Lu, Yi Du, Zheng-An Yao, Zujin Zhang. A blow-up criterion for the 3D compressible MHD equations. Communications on Pure and Applied Analysis, 2012, 11 (3) : 1167-1183. doi: 10.3934/cpaa.2012.11.1167

[15]

Hayato Miyazaki. Strong blow-up instability for standing wave solutions to the system of the quadratic nonlinear Klein-Gordon equations. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2411-2445. doi: 10.3934/dcds.2020370

[16]

Ahmad Z. Fino, Mohamed Ali Hamza. Blow-up of solutions to semilinear wave equations with a time-dependent strong damping. Evolution Equations and Control Theory, 2022  doi: 10.3934/eect.2022006

[17]

Hamid Bellout, Jiří Neustupa, Patrick Penel. On a $\nu$-continuous family of strong solutions to the Euler or Navier-Stokes equations with the Navier-Type boundary condition. Discrete and Continuous Dynamical Systems, 2010, 27 (4) : 1353-1373. doi: 10.3934/dcds.2010.27.1353

[18]

Xuanji Jia, Zaihong Jiang. An anisotropic regularity criterion for the 3D Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (3) : 1299-1306. doi: 10.3934/cpaa.2013.12.1299

[19]

Seung-Yeal Ha, Shi Jin. Local sensitivity analysis for the Cucker-Smale model with random inputs. Kinetic and Related Models, 2018, 11 (4) : 859-889. doi: 10.3934/krm.2018034

[20]

Martial Agueh, Reinhard Illner, Ashlin Richardson. Analysis and simulations of a refined flocking and swarming model of Cucker-Smale type. Kinetic and Related Models, 2011, 4 (1) : 1-16. doi: 10.3934/krm.2011.4.1

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (264)
  • HTML views (100)
  • Cited by (0)

Other articles
by authors

[Back to Top]