We study local existence and uniqueness of a strong solution to the kinetic thermomechanical Cucker–Smale (in short TCS) model coupled with incompressible Navier–Stokes (NS) equations in the whole space. The coupled system consists of the kinetic TCS equation for particle ensemble and the incompressible NS equations for a fluid via a drag force. For the strong solution, we investigate the blow-up mechanism for the coupled system, and we also study the global existence of a weak solution in the whole space.
Citation: |
[1] |
H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Time-asymptotic interaction of flocking particles and incompressible viscous fluid,, Nonlinearity, 25 (2012), 1155-1177.
doi: 10.1088/0951-7715/25/4/1155.![]() ![]() ![]() |
[2] |
H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Asymptotic flocking dynamics of Cucker-Smale particles immersed in compressible fluids, Discrete and Continuous Dynamical System, 34 (2014), 4419-4458.
doi: 10.3934/dcds.2014.34.4419.![]() ![]() ![]() |
[3] |
H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Global existence of strong solution for the Cucker-Smale-Navier-Stokes system, J. Differ. Equat., 257 (2014), 2225-2255.
doi: 10.1016/j.jde.2014.05.035.![]() ![]() ![]() |
[4] |
H.-O. Bae, Y.-P. Choi, S.-Y. Ha and M.-J. Kang, Global existence of strong solutions to the Cucker-Smale-Stokes system, J. Math. Fluid Mech., 18 (2016), 381-396.
doi: 10.1007/s00021-015-0237-2.![]() ![]() ![]() |
[5] |
C. Baranger, L. Boudin, P.-E. Jabin and S. Mancini, A modeling of biospray for the upper airways, ESAIM Proc., 14 (2005), 41-47.
![]() ![]() |
[6] |
C. Baranger and L. Desvillettes, Coupling Euler and Vlasov equation in the context of sprays: the local-in-time, classical solutions, J. Hyperbolic Differ. Equ., 3 (2006), 1-26.
doi: 10.1142/S0219891606000707.![]() ![]() ![]() |
[7] |
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solution for the coupled Vlasov and Navier-Stokes equations, Differential Integral Equations, 22 (2009), 1247-1271.
![]() ![]() |
[8] |
J. A. Carrillo, Y.-P. Choi and T. K. Karper, On the analysis of a coupled kinetic-fluid model with local alignment forces,, Ann. I. H. Poincare-AN., 33 (2016), 273-307.
doi: 10.1016/j.anihpc.2014.10.002.![]() ![]() ![]() |
[9] |
Y.-P. Choi, Large-time behavior for the Vlasov/compressible Navier-Stokes equations,, J. Math. Phys., 57 (2016), 071501, 13pp.
doi: 10.1063/1.4955026.![]() ![]() ![]() |
[10] |
Y.-P. Choi and J. Lee, Global existence of weak and strong solutions to Cucker-Smale-Navier-Stokes equations in $ \mathbb R^2$, Nonlinear Analysis: Real World Applications, 27 (2016), 158-182.
doi: 10.1016/j.nonrwa.2015.07.013.![]() ![]() ![]() |
[11] |
Y.-P. Choi and B. Kwon, Global well-posedness and large-time behavior for the inhomogeneous Vlasov-Navier-Stokes equations, Nonlinearity, 28 (2015), 3309-3336.
doi: 10.1088/0951-7715/28/9/3309.![]() ![]() ![]() |
[12] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
[13] |
Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, Global dynamics of the thermomechanical Cucker-Smale ensemble immersed in incompressible viscous fluids, Nonlinearity, 32 (2019), 1597-1640.
doi: 10.1088/1361-6544/aafaae.![]() ![]() ![]() |
[14] |
Y.-P. Choi, S.-Y. Ha, J. Jung and J. Kim, On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system, J. Math. Fluid Mech., 22 (2020), Art. 4, 34 pp.
doi: 10.1007/s00021-019-0466-x.![]() ![]() ![]() |
[15] |
J.-G. Dong, S.-Y. Ha, D. Kim and J. Kim, Time-delay effect on the flocking in an ensemble of thermomechanical Cucker-Smale particles, J. Differential Equations, 266 (2019), 2373-2407.
doi: 10.1016/j.jde.2018.08.034.![]() ![]() ![]() |
[16] |
K. Hamdache, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations, Japan J. Indust. Appl. Math., 15 (1998), 51-74.
doi: 10.1007/BF03167396.![]() ![]() ![]() |
[17] |
S.-Y. Ha, J. Kim, C. H. Min, T. Ruggeri and X. Zhang, A global existence of classical solutions to the hydrodynamic Cucker-Smale model in presence of a temperature field, Anal. Appl., 16 (2018), 757-805.
doi: 10.1142/S0219530518500033.![]() ![]() ![]() |
[18] |
S.-Y. Ha, J. Kim, C. H. Min, T. Ruggeri and X. Zhang, Uniform stability and mean-field limit of a thermodynamic Cucker-Smale model, Quart. Appl. Math., 77 (2019), 131-176.
doi: 10.1090/qam/1517.![]() ![]() ![]() |
[19] |
S.-Y. Ha, J. Kim and T. Ruggeri, Emergent behaviors of thermodynamic Cucker–Smale particles, SIAM J. Math. Anal., 50 (2018), 3092-3121.
doi: 10.1137/17M111064X.![]() ![]() ![]() |
[20] |
S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397-1425.
doi: 10.1007/s00205-016-1062-3.![]() ![]() ![]() |
[21] |
F. Li, Y. Mu and D. Wang, Strong solutions to the compressible Navier-stokes-Vlasov-Fokker-Plank equations: global existence near the equilibrium and large time behavior, SIAM J. Math. Anal., 49 (2017), 984-1026.
doi: 10.1137/15M1053049.![]() ![]() ![]() |
[22] |
J. Mathiaud, Local smooth solutions of a thin spray model with collisions, Math. Models Methods Appl. Sci., 20 (2010), 191-221.
doi: 10.1142/S0218202510004192.![]() ![]() ![]() |
[23] |
A. Mellet and A. Vasseur, Global weak solutions for a Vlasov-Fokker-Plank/Navier-Stokes system of equations,, Math. Models Methods Appl. Sci., 17 (2007), 1039-1063.
doi: 10.1142/S0218202507002194.![]() ![]() ![]() |
[24] |
P. O'Rourke, Collective Drop Effects on Vaporizing Liquid Sprays, Princeton University, Princeton, NJ, 1981.
![]() |
[25] |
W. E. Ranz and W. R. Marshall, Evaporization from drops, part Ⅰ-Ⅱ, Chem. Eng. Prog., 48 (1952), 141-180.
![]() |
[26] |
I. Vinkovic, C. Aguirre, S. Simoëns and M. Gorokhovski, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow, Int. J. Multiph. Flow, 32 (2006), 344-364.
![]() |
[27] |
T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.![]() ![]() ![]() |
[28] |
D. Wang and C. Yu, Global weak solutions to the inhomogeneous Navier-Stokes-Vlasov equations, J. Differential Equations, 259 (2014), 3976-4008.
doi: 10.1016/j.jde.2015.05.016.![]() ![]() ![]() |
[29] |
C. Yu, Global weak solutions to the incompressible Navier-Stokes-Vlasov equations, J. Math. Pures Appl., 100 (2013), 275-293.
doi: 10.1016/j.matpur.2013.01.001.![]() ![]() ![]() |