-
Previous Article
Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules
- KRM Home
- This Issue
-
Next Article
Quantitative local sensitivity estimates for the random kinetic Cucker-Smale model with chemotactic movement
On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states
Fakultät für Mathematik, Physik und Informatik, Universität Bayreuth, D-95440 Bayreuth, Germany |
If the Vlasov-Poisson or Einstein-Vlasov system is linearized about an isotropic steady state, a linear operator arises the properties of which are relevant in the linear as well as nonlinear stability analysis of the given steady state. We prove that when defined on a suitable Hilbert space and equipped with the proper domain of definition this transport operator $ {\mathcal T} $ is skew-adjoint, i.e., $ {\mathcal T}^\ast = - {\mathcal T} $. In the Vlasov-Poisson case we also determine the kernel of this operator.
References:
[1] |
H. Andréasson, The Einstein-Vlasov system/kinetic theory, Living Rev. Relativ., 14 (2011), Available from: https://doi.org/10.12942/lrr-2011-4. |
[2] |
J. Batt, W. Faltenbacher and E. Horst,
Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183.
doi: 10.1007/BF00279958. |
[3] |
J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987.
![]() |
[4] |
M. Bostan,
Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.
doi: 10.1016/j.jde.2010.07.010. |
[5] |
Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789–813.
doi: 10.1007/s00220-008-0439-z. |
[6] |
Y. Guo and G. Rein,
A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys., 271 (2007), 489-509.
doi: 10.1007/s00220-007-0212-8. |
[7] |
M. Hadžić, Z. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, preprint, arXiv: 1810.00809. |
[8] |
J. Ipser and K. S. Thorne,
Relativistic, spherically symmetric star clusters I. Stability theory for radial perturbations, Astrophys. J., 154 (1968), 251-270.
doi: 10.1086/149755. |
[9] |
M. Lemou, F. Mehats and P. Raphaël,
A new variational approach to the stability of gravitational systems, Commun. Math. Phys., 302 (2011), 161-224.
doi: 10.1007/s00220-010-1182-9. |
[10] |
T. Ramming and G. Rein,
Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case—A simple proof for finite extension, SIAM Journal on Mathematical Analysis, 45 (2013), 900-914.
doi: 10.1137/120896712. |
[11] |
G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitationsschrift, Universität München, 1995. |
[12] |
G. Rein, Collisionless kinetic equations from astrophysics—The Vlasov-Poisson system, in Handbook of Differential Equations, Evolutionary Equations (eds. C. M. Dafermos and E. Feireisl), 3, Elsevier, 2007,383–476.
doi: 10.1016/S1874-5717(07)80008-9. |
[13] | |
[14] |
J. Schaeffer,
A class of counterexamples to Jeans' theorem for the Vlasov-Einstein system, Commun. Math. Phys., 204 (1999), 313-327.
doi: 10.1007/s002200050647. |
[15] |
C. Straub, Stability of the King model—A coercivity-based approach, Master thesis, Universität Bayreuth, 2019. |
show all references
References:
[1] |
H. Andréasson, The Einstein-Vlasov system/kinetic theory, Living Rev. Relativ., 14 (2011), Available from: https://doi.org/10.12942/lrr-2011-4. |
[2] |
J. Batt, W. Faltenbacher and E. Horst,
Stationary spherically symmetric models in stellar dynamics, Arch. Rational Mech. Anal., 93 (1986), 159-183.
doi: 10.1007/BF00279958. |
[3] |
J. Binney and S. Tremaine, Galactic Dynamics, Princeton University Press, Princeton, 1987.
![]() |
[4] |
M. Bostan,
Transport equations with disparate advection fields. Application to the gyrokinetic models in plasma physics, J. Differential Equations, 249 (2010), 1620-1663.
doi: 10.1016/j.jde.2010.07.010. |
[5] |
Y. Guo and Z. Lin, Unstable and stable galaxy models, Commun. Math. Phys., 279 (2008), 789–813.
doi: 10.1007/s00220-008-0439-z. |
[6] |
Y. Guo and G. Rein,
A non-variational approach to nonlinear stability in stellar dynamics applied to the King model, Commun. Math. Phys., 271 (2007), 489-509.
doi: 10.1007/s00220-007-0212-8. |
[7] |
M. Hadžić, Z. Lin and G. Rein, Stability and instability of self-gravitating relativistic matter distributions, preprint, arXiv: 1810.00809. |
[8] |
J. Ipser and K. S. Thorne,
Relativistic, spherically symmetric star clusters I. Stability theory for radial perturbations, Astrophys. J., 154 (1968), 251-270.
doi: 10.1086/149755. |
[9] |
M. Lemou, F. Mehats and P. Raphaël,
A new variational approach to the stability of gravitational systems, Commun. Math. Phys., 302 (2011), 161-224.
doi: 10.1007/s00220-010-1182-9. |
[10] |
T. Ramming and G. Rein,
Spherically symmetric equilibria for self-gravitating kinetic or fluid models in the non-relativistic and relativistic case—A simple proof for finite extension, SIAM Journal on Mathematical Analysis, 45 (2013), 900-914.
doi: 10.1137/120896712. |
[11] |
G. Rein, The Vlasov-Einstein System with Surface Symmetry, Habilitationsschrift, Universität München, 1995. |
[12] |
G. Rein, Collisionless kinetic equations from astrophysics—The Vlasov-Poisson system, in Handbook of Differential Equations, Evolutionary Equations (eds. C. M. Dafermos and E. Feireisl), 3, Elsevier, 2007,383–476.
doi: 10.1016/S1874-5717(07)80008-9. |
[13] | |
[14] |
J. Schaeffer,
A class of counterexamples to Jeans' theorem for the Vlasov-Einstein system, Commun. Math. Phys., 204 (1999), 313-327.
doi: 10.1007/s002200050647. |
[15] |
C. Straub, Stability of the King model—A coercivity-based approach, Master thesis, Universität Bayreuth, 2019. |
[1] |
Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic and Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051 |
[2] |
Sebastian Günther, Gerhard Rein. The Einstein-Vlasov system in maximal areal coordinates---Local existence and continuation. Kinetic and Related Models, 2022, 15 (4) : 681-719. doi: 10.3934/krm.2021040 |
[3] |
Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic and Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955 |
[4] |
Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic and Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129 |
[5] |
Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic and Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050 |
[6] |
Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic and Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039 |
[7] |
Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic and Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046 |
[8] |
Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361 |
[9] |
Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic and Related Models, 2022, 15 (4) : 721-727. doi: 10.3934/krm.2021021 |
[10] |
Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723 |
[11] |
Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283 |
[12] |
Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic and Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043 |
[13] |
Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003 |
[14] |
Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete and Continuous Dynamical Systems, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457 |
[15] |
Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579 |
[16] |
Yemin Chen. Smoothness of classical solutions to the Vlasov-Poisson-Landau system. Kinetic and Related Models, 2008, 1 (3) : 369-386. doi: 10.3934/krm.2008.1.369 |
[17] |
Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393 |
[18] |
Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751 |
[19] |
Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete and Continuous Dynamical Systems, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292 |
[20] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]