• Previous Article
    On the generic complete synchronization of the discrete Kuramoto model
  • KRM Home
  • This Issue
  • Next Article
    On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states
October  2020, 13(5): 951-978. doi: 10.3934/krm.2020033

Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules

1. 

Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan

2. 

Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, P. R. China

3. 

Université de Rouen-Normandie, CNRS UMR 6085, Laboratoire de Mathématiques, 76801 Saint-Etienne du Rouvray, France

* Corresponding author: morimoto.yoshinori.74r@st.kyoto-u.ac.jp

Received  December 2019 Revised  March 2020 Published  August 2020

Fund Project: The research of the first author is supported by JSPS Kakenhi Grant No.17K05318. The research of the second author is supported partially by "The Fundamental Research Funds for Central Universities"

We consider the Cauchy problem of the nonlinear Landau equation of Maxwellian molecules, under the perturbation frame work to global equilibrium. We show that if $ H^r_x(L^2_v), r >3/2 $ norm of the initial perturbation is small enough, then the Cauchy problem of the nonlinear Landau equation admits a unique global solution which becomes analytic with respect to both position $ x $ and velocity $ v $ variables for any time $ t>0 $. This is the first result of analytic smoothing effect for the spatially inhomogeneous nonlinear kinetic equation. The method used here is microlocal analysis and energy estimates. The key point is adopting a time integral weight of exponential type associated with the kinetic transport operator.

Citation: Yoshinori Morimoto, Chao-Jiang Xu. Analytic smoothing effect for the nonlinear Landau equation of Maxwellian molecules. Kinetic and Related Models, 2020, 13 (5) : 951-978. doi: 10.3934/krm.2020033
References:
[1]

R. AlexandreL. DesvillettesC. Villani and B. Wennberg, Entropy dissipation and long-range interaction, Arch. Ration. Mech. Anal., 152 (2000), 327-355.  doi: 10.1007/s002050000083.

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123.  doi: 10.1007/s00205-010-0290-1.

[3]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661.  doi: 10.1007/s00205-011-0432-0.

[4]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581.  doi: 10.1007/s00220-011-1242-9.

[5]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 21 (2004), 61-95.  doi: 10.1016/S0294-1449(03)00030-1.

[6]

H. BarbarouxD. HundermarkT. Ried and S. Vugalter, Gevrey smoothing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac equation without cutoff for Maxwellian molecules, Arch. Rational Mech. Anal., 225 (2017), 601-661.  doi: 10.1007/s00205-017-1101-8.

[7]

A. V. Bobylev, The expansion of the Boltzmann collision integral in a Landau series, Dokl. Akad. Nauk SSSR, 225 (1975), 535-538. 

[8]

A. V. BobylevI. M. Gamba and I. F. Potapenko, On some properties of the Landau kinetic equation, J. Stat. Phys., 161 (2015), 1327-1338.  doi: 10.1007/s10955-015-1311-0.

[9]

A. V. BobylevM. Pulvirenti and C. Saffrio, From practical system to the Landau equation: A consistency result, Commun. Math. Phys., 319 (2013), 683-702.  doi: 10.1007/s00220-012-1633-6.

[10]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory, Editions scientifiques et médicales Elsevier, Paris, 2000.

[11]

S. CameronL. Silvestre and S. Snelson, Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials, Ann. Inst. H. Poincaré Anal. Non linéaire, 35 (2018), 625-642.  doi: 10.1016/j.anihpc.2017.07.001.

[12]

H.-M. CaoH.-G. LiC.-J. Xu and J. Xu, Well-posedness of Cauchy problem for Landau equation in critical Besov space, Kinetic and Related Models, 12 (2019), 829-884.  doi: 10.3934/krm.2019032.

[13]

K. Carrapatoso and S. Mischler, Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. Partial Differential Equations, 3 (2017), 1-65.  doi: 10.1007/s40818-017-0021-0.

[14]

K. CarrapatosoI. Tristani and K.-C. Wu, Cauchy problem and exponential stability for the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., 221 (2016), 363-418.  doi: 10.1007/s00205-015-0963-x.

[15]

L. Desvillettes, On asymptotics of the Boltzmann equation when collisions became grazing, Transp. Theory Stat. Phys., 21 (1992), 259-276.  doi: 10.1080/00411459208203923.

[16]

L. Desvillettes, Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., 269 (2015), 1359-1403.  doi: 10.1016/j.jfa.2015.05.009.

[17]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Ⅰ. Existence, uniqueness and smoothness, Commun. Partial Differ. Equ., 25 (2000), 179-259.  doi: 10.1080/03605300008821512.

[18]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Ⅱ. H-theorem and applications, Commun. Partial Differ. Equ., 25 (2000), 261-298.  doi: 10.1080/03605300008821513.

[19]

R. Duan, S. Liu, S. Sakamoto and R. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Comm. Pure Appl. Math., (2020). doi: 10.1002/cpa.21920.

[20]

F. GolseC. ImbertC. Mouhot and A. Vasseur, Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19 (2019), 253-295. 

[21]

L. GlangetasH.-G. Li and C.-J. Xu, Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation, Kinet. Relat. Models, 9 (2016), 299-371.  doi: 10.3934/krm.2016.9.299.

[22]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phy., 231 (2002), 391-434.  doi: 10.1007/s00220-002-0729-9.

[23]

C. Henderson and S. Snelson, $C^\infty$ smoothing for weak solutions of the inhomogeneous Landau equations, Arch. Ration. Mech. Anal., 236 (2020), 113-143.  doi: 10.1007/s00205-019-01465-7.

[24]

L. D. Landau, Kinetic equation for the case of Coulomb interaction, Phys. Zs. Sov. Union, 10 (1936), 154-164. 

[25]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648.  doi: 10.3934/krm.2013.6.625.

[26]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing effect for the spatially inhomogeneous non-cutoff Kac equation, J. Funct. Anal., 269 (2015), 459-535.  doi: 10.1016/j.jfa.2015.04.017.

[27]

P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London, Ser. A, 346 (1994), 191-204.  doi: 10.1098/rsta.1994.0018.

[28]

Y. MorimotoK. Pravda-Starov and C.-J. Xu, A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equations, Kinet. trlat. Models, 6 (2013), 715-727.  doi: 10.3934/krm.2013.6.715.

[29]

Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper., Appl., 1 (2010), 139-159.  doi: 10.1007/s11868-010-0008-z.

[30]

Y. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst. A, 24 (2009), 187-212.  doi: 10.3934/dcds.2009.24.187.

[31]

Y. MorimotoS. Wang and T. Yang, Measure valued solutions to the spatially homogeneous Boltzmann equation without angular cutoff, J. Stat. Phys., 165 (2016), 866-906.  doi: 10.1007/s10955-016-1655-0.

[32]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617.  doi: 10.1016/j.jde.2009.01.028.

[33]

R. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.  doi: 10.1007/s00205-007-0067-3.

[34]

T. Yang and H. Yu, Optimal convergence rates of the Landau equation with external forcing in the whole space, Acta Math. Sci., 29B (2009), 1035-1062.  doi: 10.1016/S0252-9602(09)60085-0.

[35]

C. Villani, On a new class of week solutions to the homogeneous Boltzmann and Landau equations, Arch. Rat. Mech. Anal., 143 (1998), 273-307.  doi: 10.1007/s002050050106.

[36]

C. Villani, A Review of Mathematical Topics in Collisional Kinetic Theory, Handbook of Mathematical Fluid Dynamics, 1, North-Holland, Amsterdam, 2002, 71–305. doi: 10.1016/S1874-5792(02)80004-0.

show all references

References:
[1]

R. AlexandreL. DesvillettesC. Villani and B. Wennberg, Entropy dissipation and long-range interaction, Arch. Ration. Mech. Anal., 152 (2000), 327-355.  doi: 10.1007/s002050000083.

[2]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularizing effect and local existence for the non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., 198 (2010), 39-123.  doi: 10.1007/s00205-010-0290-1.

[3]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, The Boltzmann equation without angular cutoff in the whole space: Qualitative properties of solutions, Arch. Ration. Mech. Anal., 202 (2011), 599-661.  doi: 10.1007/s00205-011-0432-0.

[4]

R. AlexandreY. MorimotoS. UkaiC.-J. Xu and T. Yang, Global existence and full regularity of the Boltzmann equation without angular cutoff, Comm. Math. Phys., 304 (2011), 513-581.  doi: 10.1007/s00220-011-1242-9.

[5]

R. Alexandre and C. Villani, On the Landau approximation in plasma physics, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 21 (2004), 61-95.  doi: 10.1016/S0294-1449(03)00030-1.

[6]

H. BarbarouxD. HundermarkT. Ried and S. Vugalter, Gevrey smoothing for weak solutions of the fully nonlinear homogeneous Boltzmann and Kac equation without cutoff for Maxwellian molecules, Arch. Rational Mech. Anal., 225 (2017), 601-661.  doi: 10.1007/s00205-017-1101-8.

[7]

A. V. Bobylev, The expansion of the Boltzmann collision integral in a Landau series, Dokl. Akad. Nauk SSSR, 225 (1975), 535-538. 

[8]

A. V. BobylevI. M. Gamba and I. F. Potapenko, On some properties of the Landau kinetic equation, J. Stat. Phys., 161 (2015), 1327-1338.  doi: 10.1007/s10955-015-1311-0.

[9]

A. V. BobylevM. Pulvirenti and C. Saffrio, From practical system to the Landau equation: A consistency result, Commun. Math. Phys., 319 (2013), 683-702.  doi: 10.1007/s00220-012-1633-6.

[10]

F. Bouchut, F. Golse and M. Pulvirenti, Kinetic equations and asymptotic theory, Editions scientifiques et médicales Elsevier, Paris, 2000.

[11]

S. CameronL. Silvestre and S. Snelson, Global a priori estimates for the inhomogeneous Landau equation with moderately soft potentials, Ann. Inst. H. Poincaré Anal. Non linéaire, 35 (2018), 625-642.  doi: 10.1016/j.anihpc.2017.07.001.

[12]

H.-M. CaoH.-G. LiC.-J. Xu and J. Xu, Well-posedness of Cauchy problem for Landau equation in critical Besov space, Kinetic and Related Models, 12 (2019), 829-884.  doi: 10.3934/krm.2019032.

[13]

K. Carrapatoso and S. Mischler, Landau equation for very soft and Coulomb potentials near Maxwellians, Ann. Partial Differential Equations, 3 (2017), 1-65.  doi: 10.1007/s40818-017-0021-0.

[14]

K. CarrapatosoI. Tristani and K.-C. Wu, Cauchy problem and exponential stability for the inhomogeneous Landau equation, Arch. Ration. Mech. Anal., 221 (2016), 363-418.  doi: 10.1007/s00205-015-0963-x.

[15]

L. Desvillettes, On asymptotics of the Boltzmann equation when collisions became grazing, Transp. Theory Stat. Phys., 21 (1992), 259-276.  doi: 10.1080/00411459208203923.

[16]

L. Desvillettes, Entropy dissipation estimates for the Landau equation in the Coulomb case and applications, J. Funct. Anal., 269 (2015), 1359-1403.  doi: 10.1016/j.jfa.2015.05.009.

[17]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Ⅰ. Existence, uniqueness and smoothness, Commun. Partial Differ. Equ., 25 (2000), 179-259.  doi: 10.1080/03605300008821512.

[18]

L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Ⅱ. H-theorem and applications, Commun. Partial Differ. Equ., 25 (2000), 261-298.  doi: 10.1080/03605300008821513.

[19]

R. Duan, S. Liu, S. Sakamoto and R. Strain, Global mild solutions of the Landau and non-cutoff Boltzmann equations, Comm. Pure Appl. Math., (2020). doi: 10.1002/cpa.21920.

[20]

F. GolseC. ImbertC. Mouhot and A. Vasseur, Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 19 (2019), 253-295. 

[21]

L. GlangetasH.-G. Li and C.-J. Xu, Sharp regularity properties for the non-cutoff spatially homogeneous Boltzmann equation, Kinet. Relat. Models, 9 (2016), 299-371.  doi: 10.3934/krm.2016.9.299.

[22]

Y. Guo, The Landau equation in a periodic box, Comm. Math. Phy., 231 (2002), 391-434.  doi: 10.1007/s00220-002-0729-9.

[23]

C. Henderson and S. Snelson, $C^\infty$ smoothing for weak solutions of the inhomogeneous Landau equations, Arch. Ration. Mech. Anal., 236 (2020), 113-143.  doi: 10.1007/s00205-019-01465-7.

[24]

L. D. Landau, Kinetic equation for the case of Coulomb interaction, Phys. Zs. Sov. Union, 10 (1936), 154-164. 

[25]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Phase space analysis and functional calculus for the linearized Landau and Boltzmann operators, Kinet. Relat. Models, 6 (2013), 625-648.  doi: 10.3934/krm.2013.6.625.

[26]

N. LernerY. MorimotoK. Pravda-Starov and C.-J. Xu, Gelfand-Shilov smoothing effect for the spatially inhomogeneous non-cutoff Kac equation, J. Funct. Anal., 269 (2015), 459-535.  doi: 10.1016/j.jfa.2015.04.017.

[27]

P.-L. Lions, On Boltzmann and Landau equations, Philos. Trans. Roy. Soc. London, Ser. A, 346 (1994), 191-204.  doi: 10.1098/rsta.1994.0018.

[28]

Y. MorimotoK. Pravda-Starov and C.-J. Xu, A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equations, Kinet. trlat. Models, 6 (2013), 715-727.  doi: 10.3934/krm.2013.6.715.

[29]

Y. Morimoto and S. Ukai, Gevrey smoothing effect of solutions for spatially homogeneous nonlinear Boltzmann equation without angular cutoff, J. Pseudo-Differ. Oper., Appl., 1 (2010), 139-159.  doi: 10.1007/s11868-010-0008-z.

[30]

Y. MorimotoS. UkaiC.-J. Xu and T. Yang, Regularity of solutions to the spatially homogeneous Boltzmann equation without angular cutoff, Discrete Contin. Dyn. Syst. A, 24 (2009), 187-212.  doi: 10.3934/dcds.2009.24.187.

[31]

Y. MorimotoS. Wang and T. Yang, Measure valued solutions to the spatially homogeneous Boltzmann equation without angular cutoff, J. Stat. Phys., 165 (2016), 866-906.  doi: 10.1007/s10955-016-1655-0.

[32]

Y. Morimoto and C.-J. Xu, Ultra-analytic effect of Cauchy problem for a class of kinetic equations, J. Differential Equations, 247 (2009), 596-617.  doi: 10.1016/j.jde.2009.01.028.

[33]

R. Strain and Y. Guo, Exponential decay for soft potentials near Maxwellian, Arch. Ration. Mech. Anal., 187 (2008), 287-339.  doi: 10.1007/s00205-007-0067-3.

[34]

T. Yang and H. Yu, Optimal convergence rates of the Landau equation with external forcing in the whole space, Acta Math. Sci., 29B (2009), 1035-1062.  doi: 10.1016/S0252-9602(09)60085-0.

[35]

C. Villani, On a new class of week solutions to the homogeneous Boltzmann and Landau equations, Arch. Rat. Mech. Anal., 143 (1998), 273-307.  doi: 10.1007/s002050050106.

[36]

C. Villani, A Review of Mathematical Topics in Collisional Kinetic Theory, Handbook of Mathematical Fluid Dynamics, 1, North-Holland, Amsterdam, 2002, 71–305. doi: 10.1016/S1874-5792(02)80004-0.

[1]

Jean-Marie Barbaroux, Dirk Hundertmark, Tobias Ried, Semjon Vugalter. Strong smoothing for the non-cutoff homogeneous Boltzmann equation for Maxwellian molecules with Debye-Yukawa type interaction. Kinetic and Related Models, 2017, 10 (4) : 901-924. doi: 10.3934/krm.2017036

[2]

Kleber Carrapatoso. Propagation of chaos for the spatially homogeneous Landau equation for Maxwellian molecules. Kinetic and Related Models, 2016, 9 (1) : 1-49. doi: 10.3934/krm.2016.9.1

[3]

Yoshinori Morimoto, Karel Pravda-Starov, Chao-Jiang Xu. A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation. Kinetic and Related Models, 2013, 6 (4) : 715-727. doi: 10.3934/krm.2013.6.715

[4]

Alexander V. Bobylev, Irene M. Gamba. Upper Maxwellian bounds for the Boltzmann equation with pseudo-Maxwell molecules. Kinetic and Related Models, 2017, 10 (3) : 573-585. doi: 10.3934/krm.2017023

[5]

Yoshinori Morimoto. A remark on Cannone-Karch solutions to the homogeneous Boltzmann equation for Maxwellian molecules. Kinetic and Related Models, 2012, 5 (3) : 551-561. doi: 10.3934/krm.2012.5.551

[6]

Noboru Okazawa, Tomomi Yokota. Smoothing effect for generalized complex Ginzburg-Landau equations in unbounded domains. Conference Publications, 2001, 2001 (Special) : 280-288. doi: 10.3934/proc.2001.2001.280

[7]

Milana Pavić-Čolić, Maja Tasković. Propagation of stretched exponential moments for the Kac equation and Boltzmann equation with Maxwell molecules. Kinetic and Related Models, 2018, 11 (3) : 597-613. doi: 10.3934/krm.2018025

[8]

James W. Webber, Sean Holman. Microlocal analysis of a spindle transform. Inverse Problems and Imaging, 2019, 13 (2) : 231-261. doi: 10.3934/ipi.2019013

[9]

Baowei Feng, Carlos Alberto Raposo, Carlos Alberto Nonato, Abdelaziz Soufyane. Analysis of exponential stabilization for Rao-Nakra sandwich beam with time-varying weight and time-varying delay: Multiplier method versus observability. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022011

[10]

Uchida Hidetake. Analytic smoothing effect and global existence of small solutions for the elliptic-hyperbolic Davey-Stewartson system. Conference Publications, 2001, 2001 (Special) : 182-190. doi: 10.3934/proc.2001.2001.182

[11]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of borehole seismic data. Inverse Problems and Imaging, , () : -. doi: 10.3934/ipi.2022026

[12]

Sufang Tang, Jingbo Dou. Quantitative analysis of a system of integral equations with weight on the upper half space. Communications on Pure and Applied Analysis, 2022, 21 (1) : 121-140. doi: 10.3934/cpaa.2021171

[13]

Marc Briant. Instantaneous exponential lower bound for solutions to the Boltzmann equation with Maxwellian diffusion boundary conditions. Kinetic and Related Models, 2015, 8 (2) : 281-308. doi: 10.3934/krm.2015.8.281

[14]

Lassaad Aloui, Imen El Khal El Taief. The Kato smoothing effect for the nonlinear regularized Schrödinger equation on compact manifolds. Mathematical Control and Related Fields, 2020, 10 (4) : 699-714. doi: 10.3934/mcrf.2020016

[15]

Khaled El Dika. Smoothing effect of the generalized BBM equation for localized solutions moving to the right. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 973-982. doi: 10.3934/dcds.2005.12.973

[16]

Raluca Felea, Romina Gaburro, Allan Greenleaf, Clifford Nolan. Microlocal analysis of Doppler synthetic aperture radar. Inverse Problems and Imaging, 2019, 13 (6) : 1283-1307. doi: 10.3934/ipi.2019056

[17]

Elena Cordero, Fabio Nicola, Luigi Rodino. Time-frequency analysis of fourier integral operators. Communications on Pure and Applied Analysis, 2010, 9 (1) : 1-21. doi: 10.3934/cpaa.2010.9.1

[18]

Yemin Chen. Analytic regularity for solutions of the spatially homogeneous Landau-Fermi-Dirac equation for hard potentials. Kinetic and Related Models, 2010, 3 (4) : 645-667. doi: 10.3934/krm.2010.3.645

[19]

He Zhang, Haibo Chen. The effect of the weight function on the number of nodal solutions of the Kirchhoff-type equations in high dimensions. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2701-2721. doi: 10.3934/cpaa.2022069

[20]

Phuong Le. Liouville theorems for an integral equation of Choquard type. Communications on Pure and Applied Analysis, 2020, 19 (2) : 771-783. doi: 10.3934/cpaa.2020036

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (203)
  • HTML views (65)
  • Cited by (0)

Other articles
by authors

[Back to Top]