-
Previous Article
Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria
- KRM Home
- This Issue
-
Next Article
On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3
Global existence theorem for a model governing the motion of two cell populations
Department of Mathematics & Statistics, Mississippi State University, Mississippi State, MS 39762, USA |
This article is concerned with the existence of a weak solution to the initial boundary problem for a cross-diffusion system which arises in the study of two cell population growth. The mathematical challenge is due to the fact that the coefficient matrix is non-symmetric and degenerate in the sense that its determinant is $ 0 $. The existence assertion is established by exploring the fact that the total population density satisfies a porous media equation.
References:
[1] |
M. Bertsch, M. E. Gurtin and D. Hilhorst, On interacting populations that disperse to avoid crowding: the case of equal dispersal velocities, Nonlinear Anal., 11 (1987), 493-499.
doi: 10.1016/0362-546X(87)90067-8. |
[2] |
M. Bertsch, M. E. Gurtin, D. Hilhorst and L. A. Peletier,
On interacting populations that disperse to avoid crowding: Preservation of segregation, J. Math. Biology, 23 (1985), 1-13.
doi: 10.1007/BF00276555. |
[3] |
F. Bubba, B. Perthame, C. Pouchol and M. Schmidtchen,
Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues, Arch. Rational Mech. Anal., 236 (2020), 735-766.
doi: 10.1007/s00205-019-01479-1. |
[4] |
H. Byrne and M. A. J. Chaplain,
Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computer Modelling, 24 (1996), 1-17.
doi: 10.1016/S0895-7177(96)00174-4. |
[5] |
H. Byrne and D. Drasdo,
Individual-based and continuum models of growing cell populations: A comparison, Journal of mathematical biology, 58 (2009), 657-687.
doi: 10.1007/s00285-008-0212-0. |
[6] |
J. A. Carrillo, S. Fagioli, F. Santambrogio and M. Schmidtchen,
Splitting schemes & segregation in reaction-(cross-)diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.
doi: 10.1137/17M1158379. |
[7] |
X. Chen, E. S. Daus and A. Jüngel,
Global existence analysis of cross-diffusion population systems for multiple species, Arch. Ration. Mech. Anal., 227 (2018), 715-747.
doi: 10.1007/s00205-017-1172-6. |
[8] |
X. Chen and A. Jüngel, When do cross-diffusion systems have an entropy structure? arXiv: 1908.06873, [math.AP], 2019. |
[9] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[10] |
L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS #74, American Mathematical Society, 1990. Third printing, 2002.
doi: 10.1090/cbms/074. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[12] |
M. E. Gurtin and A. C. Pipkin,
A note on interacting populations that disperse to avoid crowding, Quarterly Appl. Math., 42 (1984), 87-94.
doi: 10.1090/qam/736508. |
[13] |
P. Gwiazda, B. Perthame and A. Świerczewska-Gwiazdak,
A two species hyperbolic-parabolic model of tissue growth, Comm. Partial Differential Equations, 44 (2019), 1605-1618.
doi: 10.1080/03605302.2019.1650064. |
[14] |
A. Jüngel,
The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.
doi: 10.1088/0951-7715/28/6/1963. |
[15] |
Q. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968. |
[16] |
T. Lorenzi, A. Lorz and B. Perthame,
On interfaces between cell populations with different mobilities, Kinetic and Related Models, 10 (2017), 299-311.
doi: 10.3934/krm.2017012. |
[17] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[18] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.
doi: 10.1090/chel/343. |
show all references
References:
[1] |
M. Bertsch, M. E. Gurtin and D. Hilhorst, On interacting populations that disperse to avoid crowding: the case of equal dispersal velocities, Nonlinear Anal., 11 (1987), 493-499.
doi: 10.1016/0362-546X(87)90067-8. |
[2] |
M. Bertsch, M. E. Gurtin, D. Hilhorst and L. A. Peletier,
On interacting populations that disperse to avoid crowding: Preservation of segregation, J. Math. Biology, 23 (1985), 1-13.
doi: 10.1007/BF00276555. |
[3] |
F. Bubba, B. Perthame, C. Pouchol and M. Schmidtchen,
Hele-Shaw limit for a system of two reaction-(cross-)diffusion equations for living tissues, Arch. Rational Mech. Anal., 236 (2020), 735-766.
doi: 10.1007/s00205-019-01479-1. |
[4] |
H. Byrne and M. A. J. Chaplain,
Modelling the role of cell-cell adhesion in the growth and development of carcinomas, Mathematical and Computer Modelling, 24 (1996), 1-17.
doi: 10.1016/S0895-7177(96)00174-4. |
[5] |
H. Byrne and D. Drasdo,
Individual-based and continuum models of growing cell populations: A comparison, Journal of mathematical biology, 58 (2009), 657-687.
doi: 10.1007/s00285-008-0212-0. |
[6] |
J. A. Carrillo, S. Fagioli, F. Santambrogio and M. Schmidtchen,
Splitting schemes & segregation in reaction-(cross-)diffusion systems, SIAM J. Math. Anal., 50 (2018), 5695-5718.
doi: 10.1137/17M1158379. |
[7] |
X. Chen, E. S. Daus and A. Jüngel,
Global existence analysis of cross-diffusion population systems for multiple species, Arch. Ration. Mech. Anal., 227 (2018), 715-747.
doi: 10.1007/s00205-017-1172-6. |
[8] |
X. Chen and A. Jüngel, When do cross-diffusion systems have an entropy structure? arXiv: 1908.06873, [math.AP], 2019. |
[9] |
E. DiBenedetto, Degenerate Parabolic Equations, Springer-Verlag, New York, 1993.
doi: 10.1007/978-1-4612-0895-2. |
[10] |
L. C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS #74, American Mathematical Society, 1990. Third printing, 2002.
doi: 10.1090/cbms/074. |
[11] |
D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983.
doi: 10.1007/978-3-642-61798-0. |
[12] |
M. E. Gurtin and A. C. Pipkin,
A note on interacting populations that disperse to avoid crowding, Quarterly Appl. Math., 42 (1984), 87-94.
doi: 10.1090/qam/736508. |
[13] |
P. Gwiazda, B. Perthame and A. Świerczewska-Gwiazdak,
A two species hyperbolic-parabolic model of tissue growth, Comm. Partial Differential Equations, 44 (2019), 1605-1618.
doi: 10.1080/03605302.2019.1650064. |
[14] |
A. Jüngel,
The boundedness-by-entropy method for cross-diffusion systems, Nonlinearity, 28 (2015), 1963-2001.
doi: 10.1088/0951-7715/28/6/1963. |
[15] |
Q. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-linear Equations of Parabolic Type, Tran. Math. Monographs, Vol. 23, AMS, Providence, RI, 1968. |
[16] |
T. Lorenzi, A. Lorz and B. Perthame,
On interfaces between cell populations with different mobilities, Kinetic and Related Models, 10 (2017), 299-311.
doi: 10.3934/krm.2017012. |
[17] |
J. Simon,
Compact sets in the space $L^p(0, T;B)$, Ann. Mat. Pura Appl., 146 (1987), 65-96.
doi: 10.1007/BF01762360. |
[18] |
R. Temam, Navier-Stokes Equations: Theory and Numerical Analysis, AMS Chelsea Publishing, Providence, RI, 2001.
doi: 10.1090/chel/343. |
[1] |
Anotida Madzvamuse, Raquel Barreira. Domain-growth-induced patterning for reaction-diffusion systems with linear cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (7) : 2775-2801. doi: 10.3934/dcdsb.2018163 |
[2] |
Anotida Madzvamuse, Hussaini Ndakwo, Raquel Barreira. Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 2133-2170. doi: 10.3934/dcds.2016.36.2133 |
[3] |
Hideki Murakawa. A relation between cross-diffusion and reaction-diffusion. Discrete and Continuous Dynamical Systems - S, 2012, 5 (1) : 147-158. doi: 10.3934/dcdss.2012.5.147 |
[4] |
Kousuke Kuto, Yoshio Yamada. On limit systems for some population models with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2745-2769. doi: 10.3934/dcdsb.2012.17.2745 |
[5] |
Michael Winkler, Dariusz Wrzosek. Preface: Analysis of cross-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : i-i. doi: 10.3934/dcdss.20202i |
[6] |
Mostafa Bendahmane, Kenneth H. Karlsen. Analysis of a class of degenerate reaction-diffusion systems and the bidomain model of cardiac tissue. Networks and Heterogeneous Media, 2006, 1 (1) : 185-218. doi: 10.3934/nhm.2006.1.185 |
[7] |
Hideki Murakawa. Fast reaction limit of reaction-diffusion systems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1047-1062. doi: 10.3934/dcdss.2020405 |
[8] |
Robert Stephen Cantrell, Xinru Cao, King-Yeung Lam, Tian Xiang. A PDE model of intraguild predation with cross-diffusion. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3653-3661. doi: 10.3934/dcdsb.2017145 |
[9] |
Yuan Lou, Wei-Ming Ni, Yaping Wu. On the global existence of a cross-diffusion system. Discrete and Continuous Dynamical Systems, 1998, 4 (2) : 193-203. doi: 10.3934/dcds.1998.4.193 |
[10] |
Yuan Lou, Wei-Ming Ni, Shoji Yotsutani. Pattern formation in a cross-diffusion system. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1589-1607. doi: 10.3934/dcds.2015.35.1589 |
[11] |
Maxime Breden, Christian Kuehn, Cinzia Soresina. On the influence of cross-diffusion in pattern formation. Journal of Computational Dynamics, 2021, 8 (2) : 213-240. doi: 10.3934/jcd.2021010 |
[12] |
Yaru Hu, Jinfeng Wang. Dynamics of an SIRS epidemic model with cross-diffusion. Communications on Pure and Applied Analysis, 2022, 21 (1) : 315-336. doi: 10.3934/cpaa.2021179 |
[13] |
Oleksiy V. Kapustyan, Pavlo O. Kasyanov, José Valero. Regularity of global attractors for reaction-diffusion systems with no more than quadratic growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (5) : 1899-1908. doi: 10.3934/dcdsb.2017113 |
[14] |
Michel Pierre, Didier Schmitt. Examples of finite time blow up in mass dissipative reaction-diffusion systems with superquadratic growth. Discrete and Continuous Dynamical Systems, 2022 doi: 10.3934/dcds.2022039 |
[15] |
Ching-Shan Chou, Yong-Tao Zhang, Rui Zhao, Qing Nie. Numerical methods for stiff reaction-diffusion systems. Discrete and Continuous Dynamical Systems - B, 2007, 7 (3) : 515-525. doi: 10.3934/dcdsb.2007.7.515 |
[16] |
Laurent Desvillettes, Klemens Fellner. Entropy methods for reaction-diffusion systems. Conference Publications, 2007, 2007 (Special) : 304-312. doi: 10.3934/proc.2007.2007.304 |
[17] |
A. Dall'Acqua. Positive solutions for a class of reaction-diffusion systems. Communications on Pure and Applied Analysis, 2003, 2 (1) : 65-76. doi: 10.3934/cpaa.2003.2.65 |
[18] |
Yanxia Wu, Yaping Wu. Existence of traveling waves with transition layers for some degenerate cross-diffusion systems. Communications on Pure and Applied Analysis, 2012, 11 (3) : 911-934. doi: 10.3934/cpaa.2012.11.911 |
[19] |
Zheng Sun, José A. Carrillo, Chi-Wang Shu. An entropy stable high-order discontinuous Galerkin method for cross-diffusion gradient flow systems. Kinetic and Related Models, 2019, 12 (4) : 885-908. doi: 10.3934/krm.2019033 |
[20] |
Yuan Lou, Salomé Martínez, Wei-Ming Ni. On $3\times 3$ Lotka-Volterra competition systems with cross-diffusion. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 175-190. doi: 10.3934/dcds.2000.6.175 |
2020 Impact Factor: 1.432
Tools
Metrics
Other articles
by authors
[Back to Top]