January  2021, 14(1): 45-76. doi: 10.3934/krm.2020048

Opinion formation systems via deterministic particles approximation

1. 

DISIM, Università degli Studi dell'Aquila, via Vetoio 1 (Coppito), 67100 L'Aquila (AQ), Italy

2. 

EPFL SB, Station 8, CH-1015 Lausanne, Switzerland

* Corresponding author: Simone Fagioli

Received  April 2020 Revised  August 2020 Published  September 2020

We propose an ODE-based derivation for a generalized class of opinion formation models either for single and multiple species (followers, leaders, trolls). The approach is purely deterministic and the evolution of the single opinion is determined by the competition between two mechanisms: the opinion diffusion and the compromise process. Such deterministic approach allows to recover in the limit an aggregation/(nonlinear)diffusion system of PDEs for the macroscopic opinion densities.

Citation: Simone Fagioli, Emanuela Radici. Opinion formation systems via deterministic particles approximation. Kinetic & Related Models, 2021, 14 (1) : 45-76. doi: 10.3934/krm.2020048
References:
[1]

G. Albi, L. Pareschi and M. Zanella, Boltzmann-type control of opinion consensus through leaders, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20140138. doi: 10.1098/rsta.2014.0138.  Google Scholar

[2]

G. Albi, L. Pareschi and M. Zanella, On the Optimal Control of Opinion Dynamics on Evolving Networks, vol. 494, 58–67, Springer, Cham, 2016. Google Scholar

[3]

G. AlbiL. Pareschi and M. Zanella, Opinion dynamics over complex networks: Kinetic modelling and numerical methods, Kinetic and Related Models, 10 (2017), 1-32.  doi: 10.3934/krm.2017001.  Google Scholar

[4]

G. Albi, P. Pareschi, G. Toscani and M. Zanella, Recent advances in opinion modeling: Control and social influence, 49–98, Birkhäuser-Springer, 2017.  Google Scholar

[5]

G. AlettiG. Naldi and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853.  doi: 10.1137/060658679.  Google Scholar

[6]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[7]

N. Ansini and S. Fagioli, Nonlinear diffusion equations with degenerate fast-decay mobility by coordinate transformation, Communications in Mathematical Sciences, 18 (2020), 459-486.  doi: 10.4310/CMS.2020.v18.n2.a8.  Google Scholar

[8]

N. Bellomo, G. Ajmone Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation. SpringerBriefs in Mathematics, Springer, 2013. doi: 10.1007/978-1-4614-7242-1.  Google Scholar

[9]

E. Ben-Naim, Opinion dynamics: Rise and fall of political parties, Europhysics Letters, 69 (2005), 671. doi: 10.1209/epl/i2004-10421-1.  Google Scholar

[10]

S. Biswas and P. Sen, Critical noise can make the minority candidate win: The u.s. presidential election cases, Phys. Rev. E, 96 (2017), 032303. doi: 10.1103/PhysRevE.96.032303.  Google Scholar

[11]

D. Borra and T. Lorenzi, A hybrid model for opinion formation, Zeitschrift für angewandte Mathematik und Physik, 64 (2013), 419–437. doi: 10.1007/s00033-012-0259-z.  Google Scholar

[12]

L. Boudin and F. Salvarani, Opinion dynamics: Kinetic modelling with mass media, application to the scottish independence referendum, Physica A: Statistical Mechanics and its Applications, 444 (2016), 448 – 457. doi: 10.1016/j.physa.2015.10.014.  Google Scholar

[13]

G. R. Boynton, The reach of politics via twitter? Can that be real?, Open Journal of Political Science, 3 (2013), 91-97.  doi: 10.4236/ojps.2013.33013.  Google Scholar

[14]

J. A. Carrillo and G. Toscani, Wasserstein metric and large–time asymptotics of nonlinear diffusion equations, New Trends in Mathematical Physics, (In Honour of the Salvatore Rionero 70th Birthday), 234–244. World Sci. Publ., Hackensack, NJ, 2004.  Google Scholar

[15]

C. CastellanoS. Fortunato and V. Loreto, Statistical physics of social dynamics, Review of Modern Physics, 81 (2009), 591-646.  doi: 10.1103/RevModPhys.81.591.  Google Scholar

[16] S. CresciM. N. La Polla and M. Tesconi, Il fenomeno dei Fake Follower in Twitter, 151–191, Pisa University Press, Pisa, 2017.   Google Scholar
[17]

E. De Cristofaro, A. Friedman, G. Jourjon, M. A. Kaafar and M. Z. Shafiq, Paying for likes?: Understanding facebook like fraud using honeypots., 2014 ACM 14th Internet Measurement Conference (IMC), 129–136. doi: 10.1145/2663716.2663729.  Google Scholar

[18]

G. Deffuant, F. Amblard, G. Weisbuch and T. Faure, How can extremism prevail? A study based on the relative agreement interaction model, Journal of Artificial Societies and Social Simulation, 5. Google Scholar

[19]

M. Di FrancescoS. Fagioli and E. Radici, Deterministic particle approximation for nonlocal transport equations with nonlinear mobility, Journal of Differential Equations, 266 (2019), 2830-2868.  doi: 10.1016/j.jde.2018.08.047.  Google Scholar

[20]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Bollettino dell'Unione Matematica Italiana, 10 (2017), 487-501.  doi: 10.1007/s40574-017-0132-2.  Google Scholar

[21]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for rational mechanics and analysis, 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[22]

M. Di Francesco and G. Stivaletta, Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux, Discrete & Continuous Dynamical Systems - A, 40 (2020), 233-266.  doi: 10.3934/dcds.2020010.  Google Scholar

[23]

B. DüringP. MarkowichJ.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 3687-3708.  doi: 10.1098/rspa.2009.0239.  Google Scholar

[24]

B. During and M.-T. Wolfram, Opinion dynamics: Inhomogeneous boltzmann-type equations modelling opinion leadership and political segregation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2015), 20150345. doi: 10.1098/rspa.2015.0345.  Google Scholar

[25]

S. Fagioli and E. Radici, Solutions to aggregationdiffusion equations with nonlinear mobility constructed via a deterministic particle approximation, Math. Mod. and Meth. in App. Sci., 28 (2018), 1801-1829.  doi: 10.1142/S0218202518400067.  Google Scholar

[26]

G. FurioliA. PulvirentiE. Terraneo and G. Toscani, Wright-fisher-type equations for opinion formation, large time behavior and weighted logarithmic-sobolev inequalities, Annales de l'Institut Henri Poincaré C, Analyse non linaire, 36 (2019), 2065-2082.  doi: 10.1016/j.anihpc.2019.07.005.  Google Scholar

[27]

S. Galam, Sociophysics: A Physicists Modeling of Psycho-Political Phenomena, (Understanding Complex Systems), Springer, 2012. doi: 10.1007/978-1-4614-2032-3.  Google Scholar

[28]

L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM J. Numer. Anal., 43 (2006), 2590-2606.  doi: 10.1137/040608672.  Google Scholar

[29]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence, models, analysis and simulation, Journal of Artificial Societies and Social Simulation, 5. Google Scholar

[30]

A. KleinH. Ahlf and V. Sharma, Social activity and structural centrality in online social networks, Telematics and Informatics, 32 (2015), 321-332.  doi: 10.1016/j.tele.2014.09.008.  Google Scholar

[31]

A. D. I. KramerJ. E. Guillory and J. T. Hancock, Experimental evidence of massive scale emotional contagion through social networks, Proceedings of the National Academy of Sciences, 11 (2014), 8788-8789.  doi: 10.1073/pnas.1320040111.  Google Scholar

[32]

H. Lavenant and B. Maury, Opinion propagation on social networks: a mathematical standpoint, ESAIM: Proceedings and Surveys, 67 (2020), 285-335. doi: 10.1051/proc/202067016.  Google Scholar

[33] P. F. LazarsfeldB. Berelson and H. Gaudet, The People's Choice: How the Voter Makes Up His Mind in a Presidential Campaign, Columbia University Press, 1968.  doi: 10.7312/laza93930.  Google Scholar
[34]

H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows, Archive for Rational Mechanics and Analysis, 172 (2004), 407-428.  doi: 10.1007/s00205-004-0307-8.  Google Scholar

[35]

D. Matthes and B. Söllner, Convergent Lagrangian discretization for drift-diffusion with nonlocal aggregation, vol. 16,313–351, Springer INdAM series, 2017.  Google Scholar

[36]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.  Google Scholar

[37]

G. Naldi, L. Pareschi and G. Toscani, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4946-3.  Google Scholar

[38] L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic Equations and Monte Carlo Methods., Oxford University Press, 2013.   Google Scholar
[39]

L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A boltzmann approach, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130396. doi: 10.1098/rsta.2013.0396.  Google Scholar

[40]

L. PareschiG. ToscaniA. Tosin and M. Zanella, Hydrodynamic models of preference formation in multi-agent societies, Journal of Nonlinear Science, 29 (2019), 2761-2796.  doi: 10.1007/s00332-019-09558-z.  Google Scholar

[41]

R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2 (2003), 395-431.   Google Scholar

[42]

G. Russo, Deterministic diffusion of particles, Comm. on Pure and Applied Mathematics, 43 (1990), 697-733.  doi: 10.1002/cpa.3160430602.  Google Scholar

[43]

F. Santambrogio, Optimal Transport for Applied Mathematicians, vol. 87 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Cham, 2015. doi: 10.1007/978-3-319-20828-2.  Google Scholar

[44]

F. Slanina and H. Lavička, Analytical results for the sznajd model of opinion formation., Eur.Phys. J. B, 35 (2003), 279-288.  doi: 10.1140/epjb/e2003-00278-0.  Google Scholar

[45]

S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276.  doi: 10.1038/35065725.  Google Scholar

[46]

K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community., Int. J. Mod. Phys. C, 11 (2000), 1157-1165.  doi: 10.1142/S0129183100000936.  Google Scholar

[47]

G. Toscani, Kinetic models of opinion formation, Comm. Math. Sci., 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.  Google Scholar

[48]

G. ToscaniC. Brugna and S. Demichelis, Kinetic models for the trading of goods, Journal of Statistical Physics, 151 (2013), 549-566.  doi: 10.1007/s10955-012-0653-0.  Google Scholar

[49]

G. Toscani, A. Tosin and M. Zanella, Opinion modeling on social media and marketing aspects, Phys. Rev. E, 98 (2018), 022315. doi: 10.1103/PhysRevE.98.022315.  Google Scholar

[50]

C. Villani, Topics in Optimal Transportation, vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.  Google Scholar

[51]

S. Yardi, D. Romero and G. Schoenebeck, Detecting spam in a twitter network, First Monday, 15. Google Scholar

show all references

References:
[1]

G. Albi, L. Pareschi and M. Zanella, Boltzmann-type control of opinion consensus through leaders, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20140138. doi: 10.1098/rsta.2014.0138.  Google Scholar

[2]

G. Albi, L. Pareschi and M. Zanella, On the Optimal Control of Opinion Dynamics on Evolving Networks, vol. 494, 58–67, Springer, Cham, 2016. Google Scholar

[3]

G. AlbiL. Pareschi and M. Zanella, Opinion dynamics over complex networks: Kinetic modelling and numerical methods, Kinetic and Related Models, 10 (2017), 1-32.  doi: 10.3934/krm.2017001.  Google Scholar

[4]

G. Albi, P. Pareschi, G. Toscani and M. Zanella, Recent advances in opinion modeling: Control and social influence, 49–98, Birkhäuser-Springer, 2017.  Google Scholar

[5]

G. AlettiG. Naldi and G. Toscani, First-order continuous models of opinion formation, SIAM J. Appl. Math., 67 (2007), 837-853.  doi: 10.1137/060658679.  Google Scholar

[6]

L. Ambrosio, N. Gigli and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability Measures, 2nd edition, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2008.  Google Scholar

[7]

N. Ansini and S. Fagioli, Nonlinear diffusion equations with degenerate fast-decay mobility by coordinate transformation, Communications in Mathematical Sciences, 18 (2020), 459-486.  doi: 10.4310/CMS.2020.v18.n2.a8.  Google Scholar

[8]

N. Bellomo, G. Ajmone Marsan and A. Tosin, Complex Systems and Society. Modeling and Simulation. SpringerBriefs in Mathematics, Springer, 2013. doi: 10.1007/978-1-4614-7242-1.  Google Scholar

[9]

E. Ben-Naim, Opinion dynamics: Rise and fall of political parties, Europhysics Letters, 69 (2005), 671. doi: 10.1209/epl/i2004-10421-1.  Google Scholar

[10]

S. Biswas and P. Sen, Critical noise can make the minority candidate win: The u.s. presidential election cases, Phys. Rev. E, 96 (2017), 032303. doi: 10.1103/PhysRevE.96.032303.  Google Scholar

[11]

D. Borra and T. Lorenzi, A hybrid model for opinion formation, Zeitschrift für angewandte Mathematik und Physik, 64 (2013), 419–437. doi: 10.1007/s00033-012-0259-z.  Google Scholar

[12]

L. Boudin and F. Salvarani, Opinion dynamics: Kinetic modelling with mass media, application to the scottish independence referendum, Physica A: Statistical Mechanics and its Applications, 444 (2016), 448 – 457. doi: 10.1016/j.physa.2015.10.014.  Google Scholar

[13]

G. R. Boynton, The reach of politics via twitter? Can that be real?, Open Journal of Political Science, 3 (2013), 91-97.  doi: 10.4236/ojps.2013.33013.  Google Scholar

[14]

J. A. Carrillo and G. Toscani, Wasserstein metric and large–time asymptotics of nonlinear diffusion equations, New Trends in Mathematical Physics, (In Honour of the Salvatore Rionero 70th Birthday), 234–244. World Sci. Publ., Hackensack, NJ, 2004.  Google Scholar

[15]

C. CastellanoS. Fortunato and V. Loreto, Statistical physics of social dynamics, Review of Modern Physics, 81 (2009), 591-646.  doi: 10.1103/RevModPhys.81.591.  Google Scholar

[16] S. CresciM. N. La Polla and M. Tesconi, Il fenomeno dei Fake Follower in Twitter, 151–191, Pisa University Press, Pisa, 2017.   Google Scholar
[17]

E. De Cristofaro, A. Friedman, G. Jourjon, M. A. Kaafar and M. Z. Shafiq, Paying for likes?: Understanding facebook like fraud using honeypots., 2014 ACM 14th Internet Measurement Conference (IMC), 129–136. doi: 10.1145/2663716.2663729.  Google Scholar

[18]

G. Deffuant, F. Amblard, G. Weisbuch and T. Faure, How can extremism prevail? A study based on the relative agreement interaction model, Journal of Artificial Societies and Social Simulation, 5. Google Scholar

[19]

M. Di FrancescoS. Fagioli and E. Radici, Deterministic particle approximation for nonlocal transport equations with nonlinear mobility, Journal of Differential Equations, 266 (2019), 2830-2868.  doi: 10.1016/j.jde.2018.08.047.  Google Scholar

[20]

M. Di FrancescoS. Fagioli and M. D. Rosini, Deterministic particle approximation of scalar conservation laws, Bollettino dell'Unione Matematica Italiana, 10 (2017), 487-501.  doi: 10.1007/s40574-017-0132-2.  Google Scholar

[21]

M. Di Francesco and M. D. Rosini, Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Archive for rational mechanics and analysis, 217 (2015), 831-871.  doi: 10.1007/s00205-015-0843-4.  Google Scholar

[22]

M. Di Francesco and G. Stivaletta, Convergence of the follow-the-leader scheme for scalar conservation laws with space dependent flux, Discrete & Continuous Dynamical Systems - A, 40 (2020), 233-266.  doi: 10.3934/dcds.2020010.  Google Scholar

[23]

B. DüringP. MarkowichJ.-F. Pietschmann and M.-T. Wolfram, Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 465 (2009), 3687-3708.  doi: 10.1098/rspa.2009.0239.  Google Scholar

[24]

B. During and M.-T. Wolfram, Opinion dynamics: Inhomogeneous boltzmann-type equations modelling opinion leadership and political segregation, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 471 (2015), 20150345. doi: 10.1098/rspa.2015.0345.  Google Scholar

[25]

S. Fagioli and E. Radici, Solutions to aggregationdiffusion equations with nonlinear mobility constructed via a deterministic particle approximation, Math. Mod. and Meth. in App. Sci., 28 (2018), 1801-1829.  doi: 10.1142/S0218202518400067.  Google Scholar

[26]

G. FurioliA. PulvirentiE. Terraneo and G. Toscani, Wright-fisher-type equations for opinion formation, large time behavior and weighted logarithmic-sobolev inequalities, Annales de l'Institut Henri Poincaré C, Analyse non linaire, 36 (2019), 2065-2082.  doi: 10.1016/j.anihpc.2019.07.005.  Google Scholar

[27]

S. Galam, Sociophysics: A Physicists Modeling of Psycho-Political Phenomena, (Understanding Complex Systems), Springer, 2012. doi: 10.1007/978-1-4614-2032-3.  Google Scholar

[28]

L. Gosse and G. Toscani, Identification of asymptotic decay to self-similarity for one-dimensional filtration equations, SIAM J. Numer. Anal., 43 (2006), 2590-2606.  doi: 10.1137/040608672.  Google Scholar

[29]

R. Hegselmann and U. Krause, Opinion dynamics and bounded confidence, models, analysis and simulation, Journal of Artificial Societies and Social Simulation, 5. Google Scholar

[30]

A. KleinH. Ahlf and V. Sharma, Social activity and structural centrality in online social networks, Telematics and Informatics, 32 (2015), 321-332.  doi: 10.1016/j.tele.2014.09.008.  Google Scholar

[31]

A. D. I. KramerJ. E. Guillory and J. T. Hancock, Experimental evidence of massive scale emotional contagion through social networks, Proceedings of the National Academy of Sciences, 11 (2014), 8788-8789.  doi: 10.1073/pnas.1320040111.  Google Scholar

[32]

H. Lavenant and B. Maury, Opinion propagation on social networks: a mathematical standpoint, ESAIM: Proceedings and Surveys, 67 (2020), 285-335. doi: 10.1051/proc/202067016.  Google Scholar

[33] P. F. LazarsfeldB. Berelson and H. Gaudet, The People's Choice: How the Voter Makes Up His Mind in a Presidential Campaign, Columbia University Press, 1968.  doi: 10.7312/laza93930.  Google Scholar
[34]

H. Li and G. Toscani, Long-time asymptotics of kinetic models of granular flows, Archive for Rational Mechanics and Analysis, 172 (2004), 407-428.  doi: 10.1007/s00205-004-0307-8.  Google Scholar

[35]

D. Matthes and B. Söllner, Convergent Lagrangian discretization for drift-diffusion with nonlocal aggregation, vol. 16,313–351, Springer INdAM series, 2017.  Google Scholar

[36]

S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Review, 56 (2014), 577-621.  doi: 10.1137/120901866.  Google Scholar

[37]

G. Naldi, L. Pareschi and G. Toscani, Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Birkhäuser, Boston, 2010. doi: 10.1007/978-0-8176-4946-3.  Google Scholar

[38] L. Pareschi and G. Toscani, Interacting Multiagent Systems. Kinetic Equations and Monte Carlo Methods., Oxford University Press, 2013.   Google Scholar
[39]

L. Pareschi and G. Toscani, Wealth distribution and collective knowledge: A boltzmann approach, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372 (2014), 20130396. doi: 10.1098/rsta.2013.0396.  Google Scholar

[40]

L. PareschiG. ToscaniA. Tosin and M. Zanella, Hydrodynamic models of preference formation in multi-agent societies, Journal of Nonlinear Science, 29 (2019), 2761-2796.  doi: 10.1007/s00332-019-09558-z.  Google Scholar

[41]

R. Rossi and G. Savaré, Tightness, integral equicontinuity and compactness for evolution problems in Banach spaces, Ann. Sc. Norm. Super. Pisa Cl. Sci., 2 (2003), 395-431.   Google Scholar

[42]

G. Russo, Deterministic diffusion of particles, Comm. on Pure and Applied Mathematics, 43 (1990), 697-733.  doi: 10.1002/cpa.3160430602.  Google Scholar

[43]

F. Santambrogio, Optimal Transport for Applied Mathematicians, vol. 87 of Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser, Cham, 2015. doi: 10.1007/978-3-319-20828-2.  Google Scholar

[44]

F. Slanina and H. Lavička, Analytical results for the sznajd model of opinion formation., Eur.Phys. J. B, 35 (2003), 279-288.  doi: 10.1140/epjb/e2003-00278-0.  Google Scholar

[45]

S. H. Strogatz, Exploring complex networks, Nature, 410 (2001), 268-276.  doi: 10.1038/35065725.  Google Scholar

[46]

K. Sznajd-Weron and J. Sznajd, Opinion evolution in closed community., Int. J. Mod. Phys. C, 11 (2000), 1157-1165.  doi: 10.1142/S0129183100000936.  Google Scholar

[47]

G. Toscani, Kinetic models of opinion formation, Comm. Math. Sci., 4 (2006), 481-496.  doi: 10.4310/CMS.2006.v4.n3.a1.  Google Scholar

[48]

G. ToscaniC. Brugna and S. Demichelis, Kinetic models for the trading of goods, Journal of Statistical Physics, 151 (2013), 549-566.  doi: 10.1007/s10955-012-0653-0.  Google Scholar

[49]

G. Toscani, A. Tosin and M. Zanella, Opinion modeling on social media and marketing aspects, Phys. Rev. E, 98 (2018), 022315. doi: 10.1103/PhysRevE.98.022315.  Google Scholar

[50]

C. Villani, Topics in Optimal Transportation, vol. 58 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI, 2003. doi: 10.1090/gsm/058.  Google Scholar

[51]

S. Yardi, D. Romero and G. Schoenebeck, Detecting spam in a twitter network, First Monday, 15. Google Scholar

Figure 1.  Convergence for different initial data to the stationary state (47). The left column shows the evolution in time for the reconstructed density, where the initial data are (48), (49) and (50) respectively, while the right column shows the opinions evolution in time. The (magenta) stars-line represent the mean opinion $ m_1(t) $ in each case. Note that, in the second simulation, $ m_1 $ is not conserved in time but still converges to zero
Figure 2.  Convergence for different initial data to the stationary state (51), where the initial data are (48), (49) and (50) respectively. Note that also in this case the mean opinion $ m_1 $ (star magenta line in the right column) converges to zero asymptotically
Figure 3.  Comparison of different stationary states (46) for different values of $ \alpha $. On the left the diffusion coefficient $ \lambda^2 = 0.5 $, on the right $ \lambda^2 = 0.03 $
Figure 4.  Convergence for the initial data (48), (49) and (50) to the stationary state (53), with $ \alpha = 1 $. Note that the nonlinearity in the diffusion produces stationary solutions with supports that are smaller than the ones we have seen in the linear diffusion case
Figure 5.  Stationary states in (53) for different values of $ \alpha $
Figure 6.  Opinion dynamics in presence of equally-strong leaders. Top-left initial data for followers(black), left leaders (red) and right leaders (blue). Top-right and bottom-left opinions evolutions for all the groups in short and long term-respectively. Bottom-right opinions evolutions for the followers
Figure 7.  Opinion dynamics in presence of one strong group of leaders and one weak group of leaders. Top-left initial data for followers(black), left leaders (red) and right leaders (blue). Top-right and bottom-left opinions evolutions for all the groups in short and long term-respectively. Bottom-right opinions evolutions for the followers
Figure 8.  Evolution of system (12). The left column concerns the case of two equally strong groups of leaders, the right column instead describes the situation where the right leader is weaker. Trolls are plotted in green and are associated to the right leaders. Top: initial data. Centre: opinions dynamic for all species. Bottom: comparison between the followers paths with or without trolls
[1]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[2]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[3]

Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367

[4]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[5]

Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223

[6]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[7]

Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427

[8]

Shanshan Chen, Junping Shi, Guohong Zhang. Spatial pattern formation in activator-inhibitor models with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2021, 26 (4) : 1843-1866. doi: 10.3934/dcdsb.2020042

[9]

Zhihua Zhang, Naoki Saito. PHLST with adaptive tiling and its application to antarctic remote sensing image approximation. Inverse Problems & Imaging, 2014, 8 (1) : 321-337. doi: 10.3934/ipi.2014.8.321

[10]

Luke Finlay, Vladimir Gaitsgory, Ivan Lebedev. Linear programming solutions of periodic optimization problems: approximation of the optimal control. Journal of Industrial & Management Optimization, 2007, 3 (2) : 399-413. doi: 10.3934/jimo.2007.3.399

[11]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[12]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[13]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[14]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[15]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[16]

Nhu N. Nguyen, George Yin. Stochastic partial differential equation models for spatially dependent predator-prey equations. Discrete & Continuous Dynamical Systems - B, 2020, 25 (1) : 117-139. doi: 10.3934/dcdsb.2019175

[17]

Ademir Fernando Pazoto, Lionel Rosier. Uniform stabilization in weighted Sobolev spaces for the KdV equation posed on the half-line. Discrete & Continuous Dynamical Systems - B, 2010, 14 (4) : 1511-1535. doi: 10.3934/dcdsb.2010.14.1511

[18]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[19]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (70)
  • HTML views (132)
  • Cited by (0)

Other articles
by authors

[Back to Top]