-
Previous Article
Diffusion limit of the Vlasov-Poisson-Boltzmann system
- KRM Home
- This Issue
-
Next Article
Shadow Lagrangian dynamics for superfluidity
Captivity of the solution to the granular media equation
Univ Lyon, Université Jean Monnet, CNRS UMR 5208, Institut Camille Jordan, Maison de l'Université, 10 rue Tréfilerie, CS 82301, 42023 Saint-Átienne Cedex 2, France |
The goal of the current paper is to provide assumptions under which the limiting probability of the granular media equation is known when there are several stable states. Indeed, it has been proved in our previous works [
References:
[1] |
D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti,
A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.
doi: 10.1023/A:1023032000560. |
[2] |
S. Benachour, B. Roynette, D. Talay and P. Vallois,
Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos, Stochastic Process. Appl., 75 (1998), 173-201.
doi: 10.1016/S0304-4149(98)00018-0. |
[3] |
S. Benachour, B. Roynette and P. Vallois,
Nonlinear self-stabilizing processes. II. Convergence to invariant probability, Stochastic Process. Appl., 75 (1998), 203-224.
doi: 10.1016/S0304-4149(98)00019-2. |
[4] |
P. Cattiaux, A. Guillin and F. Malrieu,
Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40.
doi: 10.1007/s00440-007-0056-3. |
[5] |
J. A. Carrillo, R. J. McCann and C. Villani,
Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.
doi: 10.4171/RMI/376. |
[6] |
J. A. Carrillo, R. J. McCann and C. Villani,
Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.
doi: 10.1007/s00205-005-0386-1. |
[7] |
Samuel Herrmann, Peter Imkeller and Dierk Peithmann,
Large deviations and a Kramers' type law for self-stabilizing diffusions, Ann. Appl. Probab., 18 (2008), 1379-1423.
doi: 10.1214/07-AAP489. |
[8] |
S. Herrmann and J. Tugaut,
Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., 120 (2010), 1215-1246.
doi: 10.1016/j.spa.2010.03.009. |
[9] |
S. Herrmann and J. Tugaut,
Stationary measures for self-stabilizing processes: Asymptotic analysis in the small noise limit, Electron. J. Probab., 15 (2010), 2087-2116.
doi: 10.1214/EJP.v15-842. |
[10] |
S. Herrmann and J. Tugaut,
Self-stabilizing processes: Uniqueness problem for stationary measures and convergence rate in the small noise limit, ESAIM Probability and statistics, 16 (2012), 277-305.
doi: 10.1051/ps/2011152. |
[11] |
M. Kac, Probability and Related Topics in Physical Sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs and B. van der Pol. Lectures in Applied Mathematics, Proceedings of the Summer Seminar, Boulder, Colo., 1957, Vol. I Interscience Publishers, London-New York 1959. |
[12] |
F. Malrieu,
Logarithmic Sobolev inequalities for some nonlinear PDE's, Stochastic Process. Appl., 95 (2001), 109-132.
doi: 10.1016/S0304-4149(01)00095-3. |
[13] |
Fl orent Malrieu,
Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560.
doi: 10.1214/aoap/1050689593. |
[14] |
H. P. McKean. Jr,
A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907-1911.
doi: 10.1073/pnas.56.6.1907. |
[15] |
H. P. McKean. Jr, Propagation of chaos for a class of nonlinear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., (1967), 41–57. |
[16] |
Yo zo Tamura,
On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 195-221.
|
[17] |
J. Tugaut,
Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., 41 (2013), 1427-1460.
doi: 10.1214/12-AOP749. |
[18] |
J. Tugaut,
Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Convergence, Stochastic Processes and Their Applications, 123 (2013), 1780-1801.
doi: 10.1016/j.spa.2012.12.003. |
[19] |
J. Tugaut,
Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86 (2014), 257-284.
doi: 10.1080/17442508.2013.775287. |
[20] |
J. Tugaut,
Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Invariant probabilities, J. Theoret. Probab., 27 (2014), 57-79.
doi: 10.1007/s10959-012-0435-2. |
[21] |
J. Tugaut,
Exit-problem of McKean-Vlasov diffusions in double-well landscape, J. Theoret. Probab., 31 (2018), 1013-1023.
doi: 10.1007/s10959-016-0737-x. |
show all references
References:
[1] |
D. Benedetto, E. Caglioti, J. A. Carrillo and M. Pulvirenti,
A non-Maxwellian steady distribution for one-dimensional granular media, J. Statist. Phys., 91 (1998), 979-990.
doi: 10.1023/A:1023032000560. |
[2] |
S. Benachour, B. Roynette, D. Talay and P. Vallois,
Nonlinear self-stabilizing processes. I. Existence, invariant probability, propagation of chaos, Stochastic Process. Appl., 75 (1998), 173-201.
doi: 10.1016/S0304-4149(98)00018-0. |
[3] |
S. Benachour, B. Roynette and P. Vallois,
Nonlinear self-stabilizing processes. II. Convergence to invariant probability, Stochastic Process. Appl., 75 (1998), 203-224.
doi: 10.1016/S0304-4149(98)00019-2. |
[4] |
P. Cattiaux, A. Guillin and F. Malrieu,
Probabilistic approach for granular media equations in the non-uniformly convex case, Probab. Theory Related Fields, 140 (2008), 19-40.
doi: 10.1007/s00440-007-0056-3. |
[5] |
J. A. Carrillo, R. J. McCann and C. Villani,
Kinetic equilibration rates for granular media and related equations: Entropy dissipation and mass transportation estimates, Rev. Mat. Iberoamericana, 19 (2003), 971-1018.
doi: 10.4171/RMI/376. |
[6] |
J. A. Carrillo, R. J. McCann and C. Villani,
Contractions in the 2-Wasserstein length space and thermalization of granular media, Arch. Ration. Mech. Anal., 179 (2006), 217-263.
doi: 10.1007/s00205-005-0386-1. |
[7] |
Samuel Herrmann, Peter Imkeller and Dierk Peithmann,
Large deviations and a Kramers' type law for self-stabilizing diffusions, Ann. Appl. Probab., 18 (2008), 1379-1423.
doi: 10.1214/07-AAP489. |
[8] |
S. Herrmann and J. Tugaut,
Non-uniqueness of stationary measures for self-stabilizing processes, Stochastic Process. Appl., 120 (2010), 1215-1246.
doi: 10.1016/j.spa.2010.03.009. |
[9] |
S. Herrmann and J. Tugaut,
Stationary measures for self-stabilizing processes: Asymptotic analysis in the small noise limit, Electron. J. Probab., 15 (2010), 2087-2116.
doi: 10.1214/EJP.v15-842. |
[10] |
S. Herrmann and J. Tugaut,
Self-stabilizing processes: Uniqueness problem for stationary measures and convergence rate in the small noise limit, ESAIM Probability and statistics, 16 (2012), 277-305.
doi: 10.1051/ps/2011152. |
[11] |
M. Kac, Probability and Related Topics in Physical Sciences, With special lectures by G. E. Uhlenbeck, A. R. Hibbs and B. van der Pol. Lectures in Applied Mathematics, Proceedings of the Summer Seminar, Boulder, Colo., 1957, Vol. I Interscience Publishers, London-New York 1959. |
[12] |
F. Malrieu,
Logarithmic Sobolev inequalities for some nonlinear PDE's, Stochastic Process. Appl., 95 (2001), 109-132.
doi: 10.1016/S0304-4149(01)00095-3. |
[13] |
Fl orent Malrieu,
Convergence to equilibrium for granular media equations and their Euler schemes, Ann. Appl. Probab., 13 (2003), 540-560.
doi: 10.1214/aoap/1050689593. |
[14] |
H. P. McKean. Jr,
A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1907-1911.
doi: 10.1073/pnas.56.6.1907. |
[15] |
H. P. McKean. Jr, Propagation of chaos for a class of nonlinear parabolic equations, in Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., (1967), 41–57. |
[16] |
Yo zo Tamura,
On asymptotic behaviors of the solution of a nonlinear diffusion equation, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 31 (1984), 195-221.
|
[17] |
J. Tugaut,
Convergence to the equilibria for self-stabilizing processes in double-well landscape, Ann. Probab., 41 (2013), 1427-1460.
doi: 10.1214/12-AOP749. |
[18] |
J. Tugaut,
Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Convergence, Stochastic Processes and Their Applications, 123 (2013), 1780-1801.
doi: 10.1016/j.spa.2012.12.003. |
[19] |
J. Tugaut,
Phase transitions of McKean-Vlasov processes in double-wells landscape, Stochastics, 86 (2014), 257-284.
doi: 10.1080/17442508.2013.775287. |
[20] |
J. Tugaut,
Self-stabilizing processes in multi-wells landscape in $\mathbb{R}^d$ - Invariant probabilities, J. Theoret. Probab., 27 (2014), 57-79.
doi: 10.1007/s10959-012-0435-2. |
[21] |
J. Tugaut,
Exit-problem of McKean-Vlasov diffusions in double-well landscape, J. Theoret. Probab., 31 (2018), 1013-1023.
doi: 10.1007/s10959-016-0737-x. |
[1] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[2] |
Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109 |
[3] |
Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258 |
[4] |
Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2021004 |
[5] |
Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics & Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006 |
[6] |
Y. Latushkin, B. Layton. The optimal gap condition for invariant manifolds. Discrete & Continuous Dynamical Systems - A, 1999, 5 (2) : 233-268. doi: 10.3934/dcds.1999.5.233 |
[7] |
Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311 |
[8] |
Christopher Bose, Rua Murray. Minimum 'energy' approximations of invariant measures for nonsingular transformations. Discrete & Continuous Dynamical Systems - A, 2006, 14 (3) : 597-615. doi: 10.3934/dcds.2006.14.597 |
[9] |
Thomas Y. Hou, Ruo Li. Nonexistence of locally self-similar blow-up for the 3D incompressible Navier-Stokes equations. Discrete & Continuous Dynamical Systems - A, 2007, 18 (4) : 637-642. doi: 10.3934/dcds.2007.18.637 |
[10] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[11] |
Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068 |
[12] |
Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213 |
[13] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems - A, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[14] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[15] |
Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367 |
[16] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[17] |
Yizhuo Wang, Shangjiang Guo. A SIS reaction-diffusion model with a free boundary condition and nonhomogeneous coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (4) : 1627-1652. doi: 10.3934/dcdsb.2018223 |
[18] |
Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems - A, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166 |
[19] |
Manfred Einsiedler, Elon Lindenstrauss. On measures invariant under diagonalizable actions: the Rank-One case and the general Low-Entropy method. Journal of Modern Dynamics, 2008, 2 (1) : 83-128. doi: 10.3934/jmd.2008.2.83 |
[20] |
Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]