April  2021, 14(2): 211-255. doi: 10.3934/krm.2021003

Diffusion limit of the Vlasov-Poisson-Boltzmann system

1. 

School of Mathematical Sciences, Capital Normal University, China

2. 

Department of Mathematics, City University of Hong Kong, China, School of Mathematics and Statistics, Chongqing University, China

3. 

College of Mathematics and Information Sciences, , Guangxi University, China

* Corresponding author: Mingying Zhong

Received  July 2020 Published  April 2021 Early access  December 2020

Fund Project: The first author was supported partially by the National Science Fund for Distinguished Young Scholars No. 11225102, the National Natural Science Foundation of China Nos. 11931010, 11871047 and 11671384, and the Capacity Building for Sci-Tech Innovation-Fundamental Scientific Research Funds 007/20530290068 and 00719530050166. The second author was supported by the General Research Fund of Hong Kong, CityU 11302518, and the Fundamental Research Funds for the Central Universities No.2019CDJCYJ001. The third author is supported by the National Natural Science Foundation of China No. 11671100, the National Science Fund for Excellent Young Scholars No. 11922107, and Guangxi Natural Science Foundation Nos. 2018GXNSFAA138210 and 2020GXNSFFA238001

In the present paper, we study the diffusion limit of the classical solution to the unipolar Vlasov-Poisson-Boltzmann (VPB) system with initial data near a global Maxwellian. We prove the convergence and establish the convergence rate of the global strong solution to the unipolar VPB system towards the solution to an incompressible Navier-Stokes-Poisson-Fourier system based on the spectral analysis with precise estimation on the initial layer.

Citation: Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic & Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003
References:
[1]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations, J. Statist. Phys., 63 (1991), 323-344.  doi: 10.1007/BF01026608.  Google Scholar

[2]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), 667-753.  doi: 10.1002/cpa.3160460503.  Google Scholar

[3]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257.  doi: 10.1142/S0218202591000137.  Google Scholar

[4]

Y. CaoC. Kim and D. Lee, Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains, Arch. Rational Mech. Anal., 233 (2019), 1027-1130.  doi: 10.1007/s00205-019-01374-9.  Google Scholar

[5]

R. J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in ${\mathbb{R}}^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[6]

R. J. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.  Google Scholar

[7]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential equations, 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[8]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Methods Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/S0218202513500012.  Google Scholar

[9]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near maxwellians, Invent. Math., 153 (2003), 593-630.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[10]

Y. Guo, The Vlasov-Poisson-Boltzmann system near maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.  Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, Comm. Math. Phys., 218 (2001), 293-313.  doi: 10.1007/s002200100391.  Google Scholar

[12]

Y. Guo and J. Jang, Global hilbert expansion for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 299 (2010), 469-501.  doi: 10.1007/s00220-010-1089-5.  Google Scholar

[13]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.  doi: 10.1002/cpa.20121.  Google Scholar

[14]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161.  doi: 10.1007/s00222-003-0316-5.  Google Scholar

[15]

T. Kato, Perturbation Theory of Linear Operator, Springer, New York, 1966.  Google Scholar

[16]

H.-L. Li, T. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, Preprint, arXiv: 1402.3633v1. Google Scholar

[17]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations, Indiana Univ. Math. J., 65 (2016), 665-725.  doi: 10.1512/iumj.2016.65.5730.  Google Scholar

[18]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., 34 (1994), 391-427,429–461. doi: 10.1215/kjm/1250519017.  Google Scholar

[19]

P.-L. Lions, Compactness in Boltzmann's equation via fourier integral operators and applications. III, J. Math. Kyoto Univ., 34 (1994), 539-584.  doi: 10.1215/kjm/1250518932.  Google Scholar

[20]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[21]

A. De MasiR. Esposito and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. Pure Appl. Math., 42 (1989), 1189-1214.  doi: 10.1002/cpa.3160420810.  Google Scholar

[22]

S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 210, (2000), 447–466. doi: 10.1007/s002200050787.  Google Scholar

[23]

S. Nelson, On some solutions to the Klein-Gordon equations related to an integral of Sonine, Trans. A. M. S., 154 (1971), 227-237.  doi: 10.1090/S0002-9947-1971-0415049-9.  Google Scholar

[24]

T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Comm. Math. Phys., 61 (1978), 119-148.  doi: 10.1007/BF01609490.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184.  doi: 10.3792/pja/1195519027.  Google Scholar

[27]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, Lecture Notes Series-No. 8, Hong Kong: Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, March, 2006. Google Scholar

[28]

Y. J. Wang, The Diffusive Limit of the Vlasov-Boltzmann System for Binary Fluids, SIAM J. Math. Anal., 43 (2011), 253-301.  doi: 10.1137/10079166X.  Google Scholar

[29]

Y. J. Wang, Decay of the two-species Vlasov-Poisson-Boltzmann system, J. Differential Equations, 254 (2013), 2304-2340.  doi: 10.1016/j.jde.2012.12.007.  Google Scholar

[30]

T. YangH. J. Yu and H. J. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rational Mech. Anal., 182 (2006), 415-470.  doi: 10.1007/s00205-006-0009-5.  Google Scholar

[31]

T. Yang and H. J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

[32]

T. Yang and H. J. Yu, Optimal convergence rates of classical solutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), 319-355.  doi: 10.1007/s00220-010-1142-4.  Google Scholar

show all references

References:
[1]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations I: Formal derivations, J. Statist. Phys., 63 (1991), 323-344.  doi: 10.1007/BF01026608.  Google Scholar

[2]

C. BardosF. Golse and D. Levermore, Fluid dynamic limits of kinetic equations II: Convergence proofs for the Boltzmann equation, Comm. Pure Appl. Math., 46 (1993), 667-753.  doi: 10.1002/cpa.3160460503.  Google Scholar

[3]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257.  doi: 10.1142/S0218202591000137.  Google Scholar

[4]

Y. CaoC. Kim and D. Lee, Global strong solutions of the Vlasov-Poisson-Boltzmann system in bounded domains, Arch. Rational Mech. Anal., 233 (2019), 1027-1130.  doi: 10.1007/s00205-019-01374-9.  Google Scholar

[5]

R. J. Duan and R. M. Strain, Optimal time decay of the Vlasov-Poisson-Boltzmann system in ${\mathbb{R}}^3$, Arch. Ration. Mech. Anal., 199 (2011), 291-328.  doi: 10.1007/s00205-010-0318-6.  Google Scholar

[6]

R. J. Duan and T. Yang, Stability of the one-species Vlasov-Poisson-Boltzmann system, SIAM J. Math. Anal., 41 (2010), 2353-2387.  doi: 10.1137/090745775.  Google Scholar

[7]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system in the whole space: The hard potential case, J. Differential equations, 252 (2012), 6356-6386.  doi: 10.1016/j.jde.2012.03.012.  Google Scholar

[8]

R. J. DuanT. Yang and H. J. Zhao, The Vlasov-Poisson-Boltzmann system for soft potentials, Math. Models Methods Appl. Sci., 23 (2013), 979-1028.  doi: 10.1142/S0218202513500012.  Google Scholar

[9]

Y. Guo, The Vlasov-Maxwell-Boltzmann system near maxwellians, Invent. Math., 153 (2003), 593-630.  doi: 10.1007/s00222-003-0301-z.  Google Scholar

[10]

Y. Guo, The Vlasov-Poisson-Boltzmann system near maxwellians, Comm. Pure Appl. Math., 55 (2002), 1104-1135.  doi: 10.1002/cpa.10040.  Google Scholar

[11]

Y. Guo, The Vlasov-Poisson-Boltzmann system near vacuum, Comm. Math. Phys., 218 (2001), 293-313.  doi: 10.1007/s002200100391.  Google Scholar

[12]

Y. Guo and J. Jang, Global hilbert expansion for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 299 (2010), 469-501.  doi: 10.1007/s00220-010-1089-5.  Google Scholar

[13]

Y. Guo, Boltzmann diffusive limit beyond the Navier-Stokes approximation, Comm. Pure Appl. Math., 59 (2006), 626-687.  doi: 10.1002/cpa.20121.  Google Scholar

[14]

F. Golse and L. Saint-Raymond, The Navier-Stokes limit of the Boltzmann equation for bounded collision kernels, Invent. Math., 155 (2004), 81-161.  doi: 10.1007/s00222-003-0316-5.  Google Scholar

[15]

T. Kato, Perturbation Theory of Linear Operator, Springer, New York, 1966.  Google Scholar

[16]

H.-L. Li, T. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, Preprint, arXiv: 1402.3633v1. Google Scholar

[17]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis and optimal decay rates of the bipolar Vlasov-Poisson-Boltzmann equations, Indiana Univ. Math. J., 65 (2016), 665-725.  doi: 10.1512/iumj.2016.65.5730.  Google Scholar

[18]

P.-L. Lions, Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., 34 (1994), 391-427,429–461. doi: 10.1215/kjm/1250519017.  Google Scholar

[19]

P.-L. Lions, Compactness in Boltzmann's equation via fourier integral operators and applications. III, J. Math. Kyoto Univ., 34 (1994), 539-584.  doi: 10.1215/kjm/1250518932.  Google Scholar

[20]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.  Google Scholar

[21]

A. De MasiR. Esposito and J. L. Lebowitz, Incompressible Navier-Stokes and Euler limits of the Boltzmann equation, Comm. Pure Appl. Math., 42 (1989), 1189-1214.  doi: 10.1002/cpa.3160420810.  Google Scholar

[22]

S. Mischler, On the initial boundary value problem for the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 210, (2000), 447–466. doi: 10.1007/s002200050787.  Google Scholar

[23]

S. Nelson, On some solutions to the Klein-Gordon equations related to an integral of Sonine, Trans. A. M. S., 154 (1971), 227-237.  doi: 10.1090/S0002-9947-1971-0415049-9.  Google Scholar

[24]

T. Nishida, Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation, Comm. Math. Phys., 61 (1978), 119-148.  doi: 10.1007/BF01609490.  Google Scholar

[25]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.  Google Scholar

[26]

S. Ukai, On the existence of global solutions of mixed problem for non-linear Boltzmann equation, Proc. Japan Acad., 50 (1974), 179-184.  doi: 10.3792/pja/1195519027.  Google Scholar

[27]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, Lecture Notes Series-No. 8, Hong Kong: Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, March, 2006. Google Scholar

[28]

Y. J. Wang, The Diffusive Limit of the Vlasov-Boltzmann System for Binary Fluids, SIAM J. Math. Anal., 43 (2011), 253-301.  doi: 10.1137/10079166X.  Google Scholar

[29]

Y. J. Wang, Decay of the two-species Vlasov-Poisson-Boltzmann system, J. Differential Equations, 254 (2013), 2304-2340.  doi: 10.1016/j.jde.2012.12.007.  Google Scholar

[30]

T. YangH. J. Yu and H. J. Zhao, Cauchy problem for the Vlasov-Poisson-Boltzmann system, Arch. Rational Mech. Anal., 182 (2006), 415-470.  doi: 10.1007/s00205-006-0009-5.  Google Scholar

[31]

T. Yang and H. J. Zhao, Global existence of classical solutions to the Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 268 (2006), 569-605.  doi: 10.1007/s00220-006-0103-4.  Google Scholar

[32]

T. Yang and H. J. Yu, Optimal convergence rates of classical solutions for Vlasov-Poisson-Boltzmann system, Comm. Math. Phys., 301 (2011), 319-355.  doi: 10.1007/s00220-010-1142-4.  Google Scholar

[1]

Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021231

[2]

Robert T. Glassey, Walter A. Strauss. Perturbation of essential spectra of evolution operators and the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems, 1999, 5 (3) : 457-472. doi: 10.3934/dcds.1999.5.457

[3]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[4]

Renjun Duan, Tong Yang, Changjiang Zhu. Boltzmann equation with external force and Vlasov-Poisson-Boltzmann system in infinite vacuum. Discrete & Continuous Dynamical Systems, 2006, 16 (1) : 253-277. doi: 10.3934/dcds.2006.16.253

[5]

Laurent Bernis, Laurent Desvillettes. Propagation of singularities for classical solutions of the Vlasov-Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems, 2009, 24 (1) : 13-33. doi: 10.3934/dcds.2009.24.13

[6]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks & Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[8]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[9]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[10]

N. Ben Abdallah, M. Lazhar Tayeb. Diffusion approximation for the one dimensional Boltzmann-Poisson system. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 1129-1142. doi: 10.3934/dcdsb.2004.4.1129

[11]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic & Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[12]

M. Pellicer, J. Solà-Morales. Spectral analysis and limit behaviours in a spring-mass system. Communications on Pure & Applied Analysis, 2008, 7 (3) : 563-577. doi: 10.3934/cpaa.2008.7.563

[13]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[14]

Shi Jin, Yingda Li. Local sensitivity analysis and spectral convergence of the stochastic Galerkin method for discrete-velocity Boltzmann equations with multi-scales and random inputs. Kinetic & Related Models, 2019, 12 (5) : 969-993. doi: 10.3934/krm.2019037

[15]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[16]

Haibo Cui, Zhensheng Gao, Haiyan Yin, Peixing Zhang. Stationary waves to the two-fluid non-isentropic Navier-Stokes-Poisson system in a half line: Existence, stability and convergence rate. Discrete & Continuous Dynamical Systems, 2016, 36 (9) : 4839-4870. doi: 10.3934/dcds.2016009

[17]

Jonathan Zinsl. Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion. Discrete & Continuous Dynamical Systems, 2016, 36 (5) : 2915-2930. doi: 10.3934/dcds.2016.36.2915

[18]

Yeping Li. Existence and some limit analysis of stationary solutions for a multi-dimensional bipolar Euler-Poisson system. Discrete & Continuous Dynamical Systems - B, 2011, 16 (1) : 345-360. doi: 10.3934/dcdsb.2011.16.345

[19]

Shuangqian Liu, Qinghua Xiao. The relativistic Vlasov-Maxwell-Boltzmann system for short range interaction. Kinetic & Related Models, 2016, 9 (3) : 515-550. doi: 10.3934/krm.2016005

[20]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (199)
  • HTML views (195)
  • Cited by (0)

Other articles
by authors

[Back to Top]