- Previous Article
- KRM Home
- This Issue
-
Next Article
Projective integration schemes for hyperbolic moment equations
Mass-conserving weak solutions to the coagulation and collisional breakage equation with singular rates
1. | Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore-560065, Karnataka, India |
2. | Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, Uttarakhand, India |
3. | Department of Mathematics, Birla Institute of Technology and Science, Pilani, Pilani-333031, Rajasthan, India |
In this article, the existence of mass-conserving solutions is investigated to the continuous coagulation and collisional breakage equation with singular collision kernels. Here, the probability distribution function attains singularity near the origin. The existence result is constructed by using both conservative and non-conservative truncations to the continuous coagulation and collisional breakage equation. The proof of the existence result relies on a classical weak $ L^1 $ compactness method.
References:
[1] |
P. K. Barik,
Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation, Evol. Equ. Control Theory, 9 (2020), 431-446.
doi: 10.3934/eect.2020012. |
[2] |
P. K. Barik and A. K. Giri,
A note on mass-conserving solutions to the coagulation and fragmentation equation by using non-conservative approximation, Kinet. Relat. Models, 11 (2018), 1125-1138.
doi: 10.3934/krm.2018043. |
[3] |
P. K. Barik and A. K. Giri, Existence and uniqueness of weak solutions to the singular kernels coagulation equation with collisional breakage, arXiv: 1806.03911, (2018). Google Scholar |
[4] |
P. K. Barik and A. K. Giri,
Global classical solutions to the continuous coagulation equation with collisional breakage, Z. Angew. Math. Phys., 71 (2020), 1-23.
doi: 10.1007/s00033-020-1261-5. |
[5] |
P. K. Barik and A. K. Giri,
Weak solutions to the continuous coagulation model with collisional breakage, Discrete Contin. Dyn. Syst., 40 (2020), 6115-6133.
doi: 10.3934/dcds.2020272. |
[6] |
P. K. Barik, A. K. Giri and P. Laurençot,
Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 1805-1825.
doi: 10.1017/prm.2018.158. |
[7] |
P. S. Brown, Structural stability of the coalescence/breakage equations, J. Atmosph. Sci., 52 (1995), 3857-3865. Google Scholar |
[8] |
C. C. Camejo and G. Warnecke,
The singular kernel coagulation equation with multifragmentation, Math. Methods Appl. Sci., 38 (2015), 2953-2973.
doi: 10.1002/mma.3272. |
[9] |
Z. Cheng and S. Redner,
Kinetics of fragmentation, J. Phys. A. Math. Gen., 23 (1990), 1233-1258.
doi: 10.1088/0305-4470/23/7/028. |
[10] |
Z. Cheng and S. Redner,
Scaling theory of fragmentation, Phys. Rev. Lett., 60 (1988), 2450-2453.
doi: 10.1103/PhysRevLett.60.2450. |
[11] |
M. H. Ernst and I. Pagonabarraga, The nonlinear fragmentation equation, J. Phys. A. Math. Theor., 40 (2007), F331–F337.
doi: 10.1088/1751-8113/40/17/F03. |
[12] |
M. Escobedo, P. Laurençot, S. Mischler and B. Perthame,
Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7. |
[13] |
F. Filbet and P. Laurençot,
Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Arch. Math., 83 (2004), 558-567.
doi: 10.1007/s00013-004-1060-9. |
[14] |
A. K. Giri, P. Laurençot and G. Warnecke,
Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.
doi: 10.1016/j.na.2011.10.021. |
[15] |
M. Kostoglou and A. J. Karabelas,
A study of the nonlinear breakage equation: Analytical and asymptotic solutions, J. Phys. A. Math. Gen., 33 (2000), 1221-1232.
doi: 10.1088/0305-4470/33/6/309. |
[16] |
P. Laurençot,
Mass-conserving solutions to coagulation-fragmentation equations with nonintegrable fragment distribution function, Quart. Appl. Math., 76 (2018), 767-785.
doi: 10.1090/qam/1511. |
[17] |
P. Laurençot, Weak compactness techniques and coagulation equations, Evolutionary Equations with Applications in Natural Sciences, J. Banasiak & M. Mokhtar-Kharroubi (eds.), Lecture Notes Math., 2126 (2015), 199–253.
doi: 10.1007/978-3-319-11322-7_5. |
[18] |
P. Laurençot and S. Mischler,
From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598. |
[19] |
P. Laurençot and D. Wrzosek,
The discrete coagulation equations with collisional breakage, J. Statist. Phys., 104 (2001), 193-220.
doi: 10.1023/A:1010309727754. |
[20] |
F. Leyvraz and H. R. Tschudi,
Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.
doi: 10.1088/0305-4470/14/12/030. |
[21] |
D. J. McLaughlin, W. Lamb and A. C. McBride,
An existence and uniqueness result for a coagulation and multiple-fragmentation equation, SIAM J. Math. Anal., 28 (1997), 1173-1190.
doi: 10.1137/S0036141095291713. |
[22] |
V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, Israel Program for Scientific Translations Ltd. Jerusalem, 1972. Google Scholar |
[23] |
I. W. Stewart,
A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505. |
[24] |
R. D. Vigil, I. Vermeersch and R. O. Fox,
Destructive aggregation: aggregation with collision-induced breakage, Colloid and Interface Science, 302 (2006), 149-158.
doi: 10.1016/j.jcis.2006.05.066. |
[25] |
I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, 2nd edition, Pitman Monogr. Surveys Pure Appl. Math., Longman, 1995. |
[26] |
D. Wilkins,
A geometrical interpretation of the coagulation equation, J. Phys. A, 15 (1982), 1175-1178.
doi: 10.1088/0305-4470/15/4/020. |
show all references
References:
[1] |
P. K. Barik,
Existence of mass-conserving weak solutions to the singular coagulation equation with multiple fragmentation, Evol. Equ. Control Theory, 9 (2020), 431-446.
doi: 10.3934/eect.2020012. |
[2] |
P. K. Barik and A. K. Giri,
A note on mass-conserving solutions to the coagulation and fragmentation equation by using non-conservative approximation, Kinet. Relat. Models, 11 (2018), 1125-1138.
doi: 10.3934/krm.2018043. |
[3] |
P. K. Barik and A. K. Giri, Existence and uniqueness of weak solutions to the singular kernels coagulation equation with collisional breakage, arXiv: 1806.03911, (2018). Google Scholar |
[4] |
P. K. Barik and A. K. Giri,
Global classical solutions to the continuous coagulation equation with collisional breakage, Z. Angew. Math. Phys., 71 (2020), 1-23.
doi: 10.1007/s00033-020-1261-5. |
[5] |
P. K. Barik and A. K. Giri,
Weak solutions to the continuous coagulation model with collisional breakage, Discrete Contin. Dyn. Syst., 40 (2020), 6115-6133.
doi: 10.3934/dcds.2020272. |
[6] |
P. K. Barik, A. K. Giri and P. Laurençot,
Mass-conserving solutions to the Smoluchowski coagulation equation with singular kernel, Proc. Roy. Soc. Edinburgh Sect. A, 150 (2020), 1805-1825.
doi: 10.1017/prm.2018.158. |
[7] |
P. S. Brown, Structural stability of the coalescence/breakage equations, J. Atmosph. Sci., 52 (1995), 3857-3865. Google Scholar |
[8] |
C. C. Camejo and G. Warnecke,
The singular kernel coagulation equation with multifragmentation, Math. Methods Appl. Sci., 38 (2015), 2953-2973.
doi: 10.1002/mma.3272. |
[9] |
Z. Cheng and S. Redner,
Kinetics of fragmentation, J. Phys. A. Math. Gen., 23 (1990), 1233-1258.
doi: 10.1088/0305-4470/23/7/028. |
[10] |
Z. Cheng and S. Redner,
Scaling theory of fragmentation, Phys. Rev. Lett., 60 (1988), 2450-2453.
doi: 10.1103/PhysRevLett.60.2450. |
[11] |
M. H. Ernst and I. Pagonabarraga, The nonlinear fragmentation equation, J. Phys. A. Math. Theor., 40 (2007), F331–F337.
doi: 10.1088/1751-8113/40/17/F03. |
[12] |
M. Escobedo, P. Laurençot, S. Mischler and B. Perthame,
Gelation and mass conservation in coagulation-fragmentation models, J. Differential Equations, 195 (2003), 143-174.
doi: 10.1016/S0022-0396(03)00134-7. |
[13] |
F. Filbet and P. Laurençot,
Mass-conserving solutions and non-conservative approximation to the Smoluchowski coagulation equation, Arch. Math., 83 (2004), 558-567.
doi: 10.1007/s00013-004-1060-9. |
[14] |
A. K. Giri, P. Laurençot and G. Warnecke,
Weak solutions to the continuous coagulation with multiple fragmentation, Nonlinear Anal., 75 (2012), 2199-2208.
doi: 10.1016/j.na.2011.10.021. |
[15] |
M. Kostoglou and A. J. Karabelas,
A study of the nonlinear breakage equation: Analytical and asymptotic solutions, J. Phys. A. Math. Gen., 33 (2000), 1221-1232.
doi: 10.1088/0305-4470/33/6/309. |
[16] |
P. Laurençot,
Mass-conserving solutions to coagulation-fragmentation equations with nonintegrable fragment distribution function, Quart. Appl. Math., 76 (2018), 767-785.
doi: 10.1090/qam/1511. |
[17] |
P. Laurençot, Weak compactness techniques and coagulation equations, Evolutionary Equations with Applications in Natural Sciences, J. Banasiak & M. Mokhtar-Kharroubi (eds.), Lecture Notes Math., 2126 (2015), 199–253.
doi: 10.1007/978-3-319-11322-7_5. |
[18] |
P. Laurençot and S. Mischler,
From the discrete to the continuous coagulation-fragmentation equations, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1219-1248.
doi: 10.1017/S0308210502000598. |
[19] |
P. Laurençot and D. Wrzosek,
The discrete coagulation equations with collisional breakage, J. Statist. Phys., 104 (2001), 193-220.
doi: 10.1023/A:1010309727754. |
[20] |
F. Leyvraz and H. R. Tschudi,
Singularities in the kinetics of coagulation processes, J. Phys. A, 14 (1981), 3389-3405.
doi: 10.1088/0305-4470/14/12/030. |
[21] |
D. J. McLaughlin, W. Lamb and A. C. McBride,
An existence and uniqueness result for a coagulation and multiple-fragmentation equation, SIAM J. Math. Anal., 28 (1997), 1173-1190.
doi: 10.1137/S0036141095291713. |
[22] |
V. S. Safronov, Evolution of the Protoplanetary Cloud and Formation of the Earth and the Planets, Israel Program for Scientific Translations Ltd. Jerusalem, 1972. Google Scholar |
[23] |
I. W. Stewart,
A global existence theorem for the general coagulation-fragmentation equation with unbounded kernels, Math. Methods Appl. Sci., 11 (1989), 627-648.
doi: 10.1002/mma.1670110505. |
[24] |
R. D. Vigil, I. Vermeersch and R. O. Fox,
Destructive aggregation: aggregation with collision-induced breakage, Colloid and Interface Science, 302 (2006), 149-158.
doi: 10.1016/j.jcis.2006.05.066. |
[25] |
I. I. Vrabie, Compactness Methods for Nonlinear Evolutions, 2nd edition, Pitman Monogr. Surveys Pure Appl. Math., Longman, 1995. |
[26] |
D. Wilkins,
A geometrical interpretation of the coagulation equation, J. Phys. A, 15 (1982), 1175-1178.
doi: 10.1088/0305-4470/15/4/020. |
[1] |
Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017 |
[2] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[3] |
Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021091 |
[4] |
Miroslav Bulíček, Victoria Patel, Endre Süli, Yasemin Şengül. Existence of large-data global weak solutions to a model of a strain-limiting viscoelastic body. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021053 |
[5] |
Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825 |
[6] |
Seung-Yeal Ha, Jinwook Jung, Jeongho Kim, Jinyeong Park, Xiongtao Zhang. A mean-field limit of the particle swarmalator model. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021011 |
[7] |
Ondrej Budáč, Michael Herrmann, Barbara Niethammer, Andrej Spielmann. On a model for mass aggregation with maximal size. Kinetic & Related Models, 2011, 4 (2) : 427-439. doi: 10.3934/krm.2011.4.427 |
[8] |
Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1757-1778. doi: 10.3934/dcdss.2020453 |
[9] |
Joel Coacalle, Andrew Raich. Compactness of the complex Green operator on non-pseudoconvex CR manifolds. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021061 |
[10] |
Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002 |
[11] |
Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044 |
[12] |
Abdulrazzaq T. Abed, Azzam S. Y. Aladool. Applying particle swarm optimization based on Padé approximant to solve ordinary differential equation. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021008 |
[13] |
Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021099 |
[14] |
Rongchang Liu, Jiangyuan Li, Duokui Yan. New periodic orbits in the planar equal-mass three-body problem. Discrete & Continuous Dynamical Systems, 2018, 38 (4) : 2187-2206. doi: 10.3934/dcds.2018090 |
[15] |
Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021 doi: 10.3934/eect.2021011 |
[16] |
Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810 |
[17] |
Chin-Chin Wu. Existence of traveling wavefront for discrete bistable competition model. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 973-984. doi: 10.3934/dcdsb.2011.16.973 |
[18] |
Shu-Yu Hsu. Existence and properties of ancient solutions of the Yamabe flow. Discrete & Continuous Dynamical Systems, 2018, 38 (1) : 91-129. doi: 10.3934/dcds.2018005 |
[19] |
Graziano Crasta, Philippe G. LeFloch. Existence result for a class of nonconservative and nonstrictly hyperbolic systems. Communications on Pure & Applied Analysis, 2002, 1 (4) : 513-530. doi: 10.3934/cpaa.2002.1.513 |
[20] |
Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024 |
2019 Impact Factor: 1.311
Tools
Metrics
Other articles
by authors
[Back to Top]