doi: 10.3934/krm.2021010

Mathematical modelling of charge transport in graphene heterojunctions

1. 

Dipartimento di Matematica e Informatica "Ulisse Dini", Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italia

2. 

Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania

3. 

Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118, Route de Narbonne, 31062 Toulouse, France

* Corresponding author: Luigi Barletti

Received  May 2020 Revised  December 2020 Published  March 2021

A typical graphene heterojunction device can be divided into two classical zones, where the transport is basically diffusive, separated by a "quantum active region" (e.g., a locally gated region), where the charge carriers are scattered according to the laws of quantum mechanics. In this paper we derive a mathematical model of such a device, where the classical regions are described by drift-diffusion equations and the quantum zone is seen as an interface where suitable transmission conditions are imposed that take into account the quantum scattering process. Numerical simulations show good agreement with experimental data.

Citation: Luigi Barletti, Giovanni Nastasi, Claudia Negulescu, Vittorio Romano. Mathematical modelling of charge transport in graphene heterojunctions. Kinetic & Related Models, doi: 10.3934/krm.2021010
References:
[1]

C. BardosR. Santos and R. Sentis, Diffusion approximation and the computation of the critical size, T. Am. Math. Soc., 284 (1984), 617-649.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[2]

L. Barletti, Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle, J. Math. Phys., 55 (2014), 083303, 21 pp. doi: 10.1063/1.4886698.  Google Scholar

[3]

L. Barletti and C. Cintolesi, Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics, J. Stat. Phys., 148 (2012), 353-386.  doi: 10.1007/s10955-012-0535-5.  Google Scholar

[4]

L. Barletti and C. Negulescu, Quantum transmission conditions for diffusive transport in graphene with steep potentials, J. Stat. Phys., 171 (2018), 696-726.  doi: 10.1007/s10955-018-2032-y.  Google Scholar

[5]

N. Ben Abdallah, A hybrid kinetic-quantum model for stationary electron transport, J. Stat. Phys., 90 (1998), 627-662.  doi: 10.1023/A:1023216701688.  Google Scholar

[6]

N. Ben AbdallahP. Degond and I. Gamba, Coupling one-dimensional time-dependent classical and quantum transport models, J. Math. Phys., 43 (2002), 1-24.  doi: 10.1063/1.1421635.  Google Scholar

[7]

V. D. Camiola, G. Mascali and V. Romano, Charge Transport in Low Dimensional Semiconductor Structures, Springer, 2020. doi: 10.1007/978-3-030-35993-5.  Google Scholar

[8]

A. Castro NetoF. GuineaN. PeresK. Novoselov and A. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009), 109-162.   Google Scholar

[9]

V. Cheianov and V. Fal'ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene, Phys. Rev. B, 74 (2006), 041403(R). Google Scholar

[10]

V. CheianovV. Fal'ko and B Altshuler, The focusing of electron flow and a Veselago lens in graphene, Science, 315 (2007), 1252-1255.   Google Scholar

[11]

M. Coco, A. Majorana, G. Nastasi and V. Romano, High-field mobility in graphene on substrate with a proper inclusion of the Pauli exclusion principle, Atti della Accademia Peloritana dei Pericolanti, 97 (2019), A6, 15 pp. doi: 10.1478/AAPP.97S1A6.  Google Scholar

[12]

P. Degond and A. El Ayyadi, A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations, J. Comput. Phys., 181 (2002), 222-259.  doi: 10.1006/jcph.2002.7122.  Google Scholar

[13]

P. Degond and C. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math. Phys., 39 (1998), 4634-4663.  doi: 10.1063/1.532528.  Google Scholar

[14]

T. Fang, et al., Carrier statistics and quantum capacitance of graphene sheets and ribbons, Appl. Phys. Lett., 91 (2007), 092109. Google Scholar

[15]

F. Golse and A. Klar, A numerical method for computing asymptotic states and outgoing distributions for kinetic linear half-space problems, J. Stat. Phys., 80 (1995), 1033-1061.  doi: 10.1007/BF02179863.  Google Scholar

[16]

B. Huard, et al., Transport measurements across a tunable potential barrier in graphene, Phys. Rev, Lett., 98 (2007), 236803. Google Scholar

[17]

M. I. KatsnelsonK. S. Novoselov and A. K Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2 (2006), 620-625.  doi: 10.1038/nphys384.  Google Scholar

[18]

G. M. LandauerD. Jimènez and J. L. Gonzàlez, An accurate and Verilog-A compatible compact model for graphene Field-Effect Transistors, IEEE Transactions on Nanotechnology, 13 (2014), 895-904.   Google Scholar

[19]

G. LeeG. Park and H. Lee, Observation of negative refraction of Dirac fermions in graphene, Nat. Phys., 11 (2015), 925-929.  doi: 10.1038/nphys3460.  Google Scholar

[20]

P. Lichtenberger, O. Morandi and F. Schürrer, High-field transport and optical phonon scattering in graphene, Phys. Rev.. B, 84 (2011), 045406. doi: 10.1103/PhysRevB.84.045406.  Google Scholar

[21]

L. Luca and V. Romano, Quantum corrected hydrodynamic models for charge transport in graphene, Annals of Physics, 406 (2019), 30-53.  doi: 10.1016/j.aop.2019.03.018.  Google Scholar

[22]

A. Lucas and K. C. Fong, Hydrodynamics of electrons in graphene, J. Phys.: Condens. Matter, 30 (2018), 053001. Google Scholar

[23]

A. MajoranaG. Nastasi and V. Romano., Simulation of bipolar charge transport in graphene by using a discontinuous Galerkin method, Commun. Comput. Phys., 26 (2019), 114-134.  doi: 10.4208/cicp.OA-2018-0052.  Google Scholar

[24]

G. Nastasi and V. Romano, Improved mobility models for charge transport in graphene, Communications in Applied and Industrial Mathematics, 10 (2019), 41-52.  doi: 10.1515/caim-2019-0011.  Google Scholar

[25]

G. Nastasi and V. Romano, Simulation of graphene field effect transistors, in Scientific Computing in Electrical Engineering - SCEE 2018 (eds. G. Nicosia and V. Romano), Springer, 32 (2018), 171–178. doi: 10.1007/978-3-030-44101-2_16.  Google Scholar

[26]

G. Nastasi and V. Romano, A full coupled drift-diffusion-Poisson simulation of a GFET, Communications in Nonlinear Science and Numerical Simulations, 87 (2020), 105300, 16 pp. doi: 10.1016/j.cnsns.2020.105300.  Google Scholar

[27]

K. Novoselov, Electric field effect in atomically thin carbon films, Science, 306 (2004), 666-669.  doi: 10.1126/science.1102896.  Google Scholar

[28]

B. Özyilmaz, et al., Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev, Lett., 99 (2007), 166804. Google Scholar

[29]

V. Romano, Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy principle, J. Math. Phys., 48 (2007), 123504, 24 pp. doi: 10.1063/1.2819600.  Google Scholar

[30]

S. A. Thiele, J. A. Schaefer and F. Schwierz, Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels, J. Appl. Phys. 107 (2010), 094505. doi: 10.1063/1.3357398.  Google Scholar

[31]

A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys., 5 (2009), 222-226.  doi: 10.1038/nphys1198.  Google Scholar

[32]

N. Zamponi and L. Barletti, Quantum electronic transport in graphene: A kinetic and fluid-dynamical approach, Math. Methods Appl. Sci., 34 (2011), 807-818.  doi: 10.1002/mma.1403.  Google Scholar

show all references

References:
[1]

C. BardosR. Santos and R. Sentis, Diffusion approximation and the computation of the critical size, T. Am. Math. Soc., 284 (1984), 617-649.  doi: 10.1090/S0002-9947-1984-0743736-0.  Google Scholar

[2]

L. Barletti, Hydrodynamic equations for electrons in graphene obtained from the maximum entropy principle, J. Math. Phys., 55 (2014), 083303, 21 pp. doi: 10.1063/1.4886698.  Google Scholar

[3]

L. Barletti and C. Cintolesi, Derivation of isothermal quantum fluid equations with Fermi-Dirac and Bose-Einstein statistics, J. Stat. Phys., 148 (2012), 353-386.  doi: 10.1007/s10955-012-0535-5.  Google Scholar

[4]

L. Barletti and C. Negulescu, Quantum transmission conditions for diffusive transport in graphene with steep potentials, J. Stat. Phys., 171 (2018), 696-726.  doi: 10.1007/s10955-018-2032-y.  Google Scholar

[5]

N. Ben Abdallah, A hybrid kinetic-quantum model for stationary electron transport, J. Stat. Phys., 90 (1998), 627-662.  doi: 10.1023/A:1023216701688.  Google Scholar

[6]

N. Ben AbdallahP. Degond and I. Gamba, Coupling one-dimensional time-dependent classical and quantum transport models, J. Math. Phys., 43 (2002), 1-24.  doi: 10.1063/1.1421635.  Google Scholar

[7]

V. D. Camiola, G. Mascali and V. Romano, Charge Transport in Low Dimensional Semiconductor Structures, Springer, 2020. doi: 10.1007/978-3-030-35993-5.  Google Scholar

[8]

A. Castro NetoF. GuineaN. PeresK. Novoselov and A. Geim, The electronic properties of graphene, Rev. Mod. Phys., 81 (2009), 109-162.   Google Scholar

[9]

V. Cheianov and V. Fal'ko, Selective transmission of Dirac electrons and ballistic magnetoresistance of n-p junctions in graphene, Phys. Rev. B, 74 (2006), 041403(R). Google Scholar

[10]

V. CheianovV. Fal'ko and B Altshuler, The focusing of electron flow and a Veselago lens in graphene, Science, 315 (2007), 1252-1255.   Google Scholar

[11]

M. Coco, A. Majorana, G. Nastasi and V. Romano, High-field mobility in graphene on substrate with a proper inclusion of the Pauli exclusion principle, Atti della Accademia Peloritana dei Pericolanti, 97 (2019), A6, 15 pp. doi: 10.1478/AAPP.97S1A6.  Google Scholar

[12]

P. Degond and A. El Ayyadi, A coupled Schrödinger drift-diffusion model for quantum semiconductor device simulations, J. Comput. Phys., 181 (2002), 222-259.  doi: 10.1006/jcph.2002.7122.  Google Scholar

[13]

P. Degond and C. Schmeiser, Macroscopic models for semiconductor heterostructures, J. Math. Phys., 39 (1998), 4634-4663.  doi: 10.1063/1.532528.  Google Scholar

[14]

T. Fang, et al., Carrier statistics and quantum capacitance of graphene sheets and ribbons, Appl. Phys. Lett., 91 (2007), 092109. Google Scholar

[15]

F. Golse and A. Klar, A numerical method for computing asymptotic states and outgoing distributions for kinetic linear half-space problems, J. Stat. Phys., 80 (1995), 1033-1061.  doi: 10.1007/BF02179863.  Google Scholar

[16]

B. Huard, et al., Transport measurements across a tunable potential barrier in graphene, Phys. Rev, Lett., 98 (2007), 236803. Google Scholar

[17]

M. I. KatsnelsonK. S. Novoselov and A. K Geim, Chiral tunnelling and the Klein paradox in graphene, Nat. Phys., 2 (2006), 620-625.  doi: 10.1038/nphys384.  Google Scholar

[18]

G. M. LandauerD. Jimènez and J. L. Gonzàlez, An accurate and Verilog-A compatible compact model for graphene Field-Effect Transistors, IEEE Transactions on Nanotechnology, 13 (2014), 895-904.   Google Scholar

[19]

G. LeeG. Park and H. Lee, Observation of negative refraction of Dirac fermions in graphene, Nat. Phys., 11 (2015), 925-929.  doi: 10.1038/nphys3460.  Google Scholar

[20]

P. Lichtenberger, O. Morandi and F. Schürrer, High-field transport and optical phonon scattering in graphene, Phys. Rev.. B, 84 (2011), 045406. doi: 10.1103/PhysRevB.84.045406.  Google Scholar

[21]

L. Luca and V. Romano, Quantum corrected hydrodynamic models for charge transport in graphene, Annals of Physics, 406 (2019), 30-53.  doi: 10.1016/j.aop.2019.03.018.  Google Scholar

[22]

A. Lucas and K. C. Fong, Hydrodynamics of electrons in graphene, J. Phys.: Condens. Matter, 30 (2018), 053001. Google Scholar

[23]

A. MajoranaG. Nastasi and V. Romano., Simulation of bipolar charge transport in graphene by using a discontinuous Galerkin method, Commun. Comput. Phys., 26 (2019), 114-134.  doi: 10.4208/cicp.OA-2018-0052.  Google Scholar

[24]

G. Nastasi and V. Romano, Improved mobility models for charge transport in graphene, Communications in Applied and Industrial Mathematics, 10 (2019), 41-52.  doi: 10.1515/caim-2019-0011.  Google Scholar

[25]

G. Nastasi and V. Romano, Simulation of graphene field effect transistors, in Scientific Computing in Electrical Engineering - SCEE 2018 (eds. G. Nicosia and V. Romano), Springer, 32 (2018), 171–178. doi: 10.1007/978-3-030-44101-2_16.  Google Scholar

[26]

G. Nastasi and V. Romano, A full coupled drift-diffusion-Poisson simulation of a GFET, Communications in Nonlinear Science and Numerical Simulations, 87 (2020), 105300, 16 pp. doi: 10.1016/j.cnsns.2020.105300.  Google Scholar

[27]

K. Novoselov, Electric field effect in atomically thin carbon films, Science, 306 (2004), 666-669.  doi: 10.1126/science.1102896.  Google Scholar

[28]

B. Özyilmaz, et al., Electronic transport and quantum Hall effect in bipolar graphene p-n-p junctions, Phys. Rev, Lett., 99 (2007), 166804. Google Scholar

[29]

V. Romano, Quantum corrections to the semiclassical hydrodynamical model of semiconductors based on the maximum entropy principle, J. Math. Phys., 48 (2007), 123504, 24 pp. doi: 10.1063/1.2819600.  Google Scholar

[30]

S. A. Thiele, J. A. Schaefer and F. Schwierz, Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels, J. Appl. Phys. 107 (2010), 094505. doi: 10.1063/1.3357398.  Google Scholar

[31]

A. F. Young and P. Kim, Quantum interference and Klein tunnelling in graphene heterojunctions, Nat. Phys., 5 (2009), 222-226.  doi: 10.1038/nphys1198.  Google Scholar

[32]

N. Zamponi and L. Barletti, Quantum electronic transport in graphene: A kinetic and fluid-dynamical approach, Math. Methods Appl. Sci., 34 (2011), 807-818.  doi: 10.1002/mma.1403.  Google Scholar

Figure 1.  Schematic geometry of our model: the rectangle represents the graphene sheet and the central strip represents the quantum active region, i.e. the zone where the variations of $ V = V(x) $ are localized. Outside the strip, in the two classical regions, the potential $ V $ has constant values $ V_0 $ and $ V_0+{\delta V} $
Figure 2.  A schematic picture of a n-p-n graphene device: the graphene sheet is represented as the black honeycomb (not in scale), the grey regions represent gates and contacts, and the blue box represents some substrate layer (typically an oxide)
17]. The dashed red line is a contour line of $ M( {\boldsymbol{p}}) \cos\phi $, corresponding to a region that encompasses approximately 90% of its integral; such region is therefore where the main contribution to the integrals in (53) comes from (the same region for $ M( {\boldsymbol{p}}) \cos^2\phi $ is just slightly narrower). In this figure the barrier width is $ 50\,\mathrm{nm} $ and the temperature is $ 40\,\mathrm{K} $. For lower values of the temperature, the Maxwellian will be narrower, resulting in a higher sensitivity to the variations of $ T_+ $">Figure 3.  Gray-scale plots of $ T_+( {\boldsymbol{p}}) $, as a function of the energy $ E = {v_F}{\vert {{ {\boldsymbol{p}}}} \vert} $ and of the incidence angle $ \phi $, for different values of the energy height $ E_h $. White corresponds to perfect transmission ($ T_+ = 1 $) and black to total reflection ($ T_+ = 0 $). Note that for $ \phi = 0 $ the barrier is always completely transparent, regardless to $ E_h $, which is the so-called Klein paradox [17]. The dashed red line is a contour line of $ M( {\boldsymbol{p}}) \cos\phi $, corresponding to a region that encompasses approximately 90% of its integral; such region is therefore where the main contribution to the integrals in (53) comes from (the same region for $ M( {\boldsymbol{p}}) \cos^2\phi $ is just slightly narrower). In this figure the barrier width is $ 50\,\mathrm{nm} $ and the temperature is $ 40\,\mathrm{K} $. For lower values of the temperature, the Maxwellian will be narrower, resulting in a higher sensitivity to the variations of $ T_+ $
Figure 4.  Conductance as a function of the top gate voltage $ V_\mathit{tg} $ for different values of the back gate (left column) and for different values of the temperature (right column). In the left plots, the temperature is fixed at $ T = 10\,\mathrm{K} $ while, in the right plots, the back gate voltage is fixed at $ V_\mathit{bg} = 23\, \mathrm{V} $
[1]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[2]

Jinye Shen, Xian-Ming Gu. Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021086

[3]

Jihoon Lee, Nguyen Thanh Nguyen. Gromov-Hausdorff stability of reaction diffusion equations with Robin boundary conditions under perturbations of the domain and equation. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1263-1296. doi: 10.3934/cpaa.2021020

[4]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3063-3092. doi: 10.3934/dcds.2020398

[5]

Hongsong Feng, Shan Zhao. A multigrid based finite difference method for solving parabolic interface problem. Electronic Research Archive, , () : -. doi: 10.3934/era.2021031

[6]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[7]

Hailing Xuan, Xiaoliang Cheng. Numerical analysis and simulation of an adhesive contact problem with damage and long memory. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2781-2804. doi: 10.3934/dcdsb.2020205

[8]

Wei Wang, Wanbiao Ma, Xiulan Lai. Sufficient conditions for global dynamics of a viral infection model with nonlinear diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3989-4011. doi: 10.3934/dcdsb.2020271

[9]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[10]

Khalid Latrach, Hssaine Oummi, Ahmed Zeghal. Existence results for nonlinear mono-energetic singular transport equations: $ L^p $-spaces. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021028

[11]

Alberto Ibort, Alberto López-Yela. Quantum tomography and the quantum Radon transform. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021021

[12]

Jean Dolbeault, Maria J. Esteban, Michał Kowalczyk, Michael Loss. Improved interpolation inequalities on the sphere. Discrete & Continuous Dynamical Systems - S, 2014, 7 (4) : 695-724. doi: 10.3934/dcdss.2014.7.695

[13]

Guangying Lv, Jinlong Wei, Guang-an Zou. Noise and stability in reaction-diffusion equations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021005

[14]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2725-3737. doi: 10.3934/dcds.2020383

[15]

Shiwen Niu, Hongmei Cheng, Rong Yuan. A free boundary problem of some modified Leslie-Gower predator-prey model with nonlocal diffusion term. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021129

[16]

Hongjie Dong, Xinghong Pan. On conormal derivative problem for parabolic equations with Dini mean oscillation coefficients. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021049

[17]

Valeria Chiado Piat, Sergey S. Nazarov, Andrey Piatnitski. Steklov problems in perforated domains with a coefficient of indefinite sign. Networks & Heterogeneous Media, 2012, 7 (1) : 151-178. doi: 10.3934/nhm.2012.7.151

[18]

Nabahats Dib-Baghdadli, Rabah Labbas, Tewfik Mahdjoub, Ahmed Medeghri. On some reaction-diffusion equations generated by non-domiciliated triatominae, vectors of Chagas disease. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021004

[19]

Yingdan Ji, Wen Tan. Global well-posedness of a 3D Stokes-Magneto equations with fractional magnetic diffusion. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3271-3278. doi: 10.3934/dcdsb.2020227

[20]

Yongqiang Fu, Xiaoju Zhang. Global existence and asymptotic behavior of weak solutions for time-space fractional Kirchhoff-type diffusion equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021091

2019 Impact Factor: 1.311

Metrics

  • PDF downloads (27)
  • HTML views (63)
  • Cited by (0)

[Back to Top]