We present a mean-field limit of the particle swarmalator model introduced in [
Citation: |
[1] |
J. A. Acebron, L. L. Bonilla, C. J. P. Pérez Vicente, F. Ritort and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Rev. Mod. Phys., 77 (2005), 137-185.
doi: 10.1103/RevModPhys.77.137.![]() ![]() |
[2] |
G. Ajmone Marsan, N. Bellomo and L. Gibelli, Stochastic evolutionary differential games toward a systems theory of behavioral social dynamics, Math. Models Methods Appl. Sci., 26 (2016), 1051-1093.
doi: 10.1142/S0218202516500251.![]() ![]() ![]() |
[3] |
G. Albi, N. Bellomo, L. Fermo, S.-Y. Ha, J. Kim, L. Pareschi, D. Poyato and J. Soler, Vehicular traffic, crowds and swarms: From kinetic theory and multiscale methods to applications and research perspectives, Math. Models Methods Appl. Sci., 29 (2019), 1901-2005.
doi: 10.1142/S0218202519500374.![]() ![]() ![]() |
[4] |
M. Ballerini, N. Cabibbo, R. Candelier, A. Cavagna, E. Cisbani, I. Giardina, V. Lecomte, A. Orlandi, G. Parisi, A. Procaccini, M. Viale and V. Zdravkovic, Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study, Proc. Natl. Acad. Sci., 105 (2008), 1232-1237.
doi: 10.1073/pnas.0711437105.![]() ![]() |
[5] |
N. Bellomo and S.-Y. Ha, A quest toward a mathematical theory of the dynamics of swarms, Math. Models Methods Appl. Sci., 27 (2017), 745-770.
doi: 10.1142/S0218202517500154.![]() ![]() ![]() |
[6] |
N. Bellomo and J. Soler, On the mathematical theory of the dynamics of swarms viewed as complex systems, Math. Models Methods Appl. Sci., 22 (2012), 1140006, 29 pp.
doi: 10.1142/S0218202511400069.![]() ![]() ![]() |
[7] |
J.-D. Benamou and Y. Brenier, A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84 (2000), 375-393.
doi: 10.1007/s002110050002.![]() ![]() ![]() |
[8] |
D. Benedetto, E. Caglioti and U. Montemagno, Exponential dephasing of oscillators in the kinetic Kuramoto model, J. Stat. Phys., 162 (2016), 813-823.
doi: 10.1007/s10955-015-1426-3.![]() ![]() ![]() |
[9] |
D. Benedetto, E. Caglioti and U. Montemagno, On the complete phase synchronization for the Kuramoto model in the mean-field limit, Commun. Math. Sci., 13 (2015), 1775-1786.
doi: 10.4310/CMS.2015.v13.n7.a6.![]() ![]() ![]() |
[10] |
A. L. Bertozzi and J. Brandman, Finite-time blow-up of $L^\infty$-weak solutions of an aggregation equation, Commun. Math. Sci., 8 (2010), 45-65.
doi: 10.4310/CMS.2010.v8.n1.a4.![]() ![]() ![]() |
[11] |
A. L. Bertozzi, T. Laurent and J. Rosado, $L^p$ theory for the multidimensional aggregation equation, Commun. Pure Appl. Math., 64 (2011), 45-83.
doi: 10.1002/cpa.20334.![]() ![]() ![]() |
[12] |
N. Boers and P. Pickl, On mean field limits for dynamical systems, J. Stat. Phys., 164 (2016), 1-16.
doi: 10.1007/s10955-015-1351-5.![]() ![]() ![]() |
[13] |
L. Boudin, L. Desvillettes, C. Grandmont and A. Moussa, Global existence of solution for the coupled Vlasov and Navier- Stokes equations, Differ. Integral Equ., 22 (2009), 1247-1271.
![]() ![]() |
[14] |
J. C. Bronski, L. Deville and M. J. Park, Fully synchronous solutions and the synchronization phase transition for the finite-$N$ Kuramoto model, Chaos, 22 (2012), 033133, 17 pp.
doi: 10.1063/1.4745197.![]() ![]() ![]() |
[15] |
J. Buck and E. Buck, Biology of sychronous flashing of fireflies, Nature, 211 (1966), 562-564.
doi: 10.1038/211562a0.![]() ![]() |
[16] |
J. A. Carrillo, M. Chipot and Y. Huang, On global minimizers of repulsive–attractive power–law interaction energies, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 372 (2014), 20130399, 13 pp.
doi: 10.1098/rsta.2013.0399.![]() ![]() ![]() |
[17] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and Jan Peszek, Sharp conditions to avoid collisions in singular Cucker–Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017.![]() ![]() ![]() |
[18] |
A. Cavagna, L. D. Castello, I. Giardina, T. Grigera, A. Jelic, S. Melillo, T. Mora, L. Parisi, E. Silvestri, M. Viale and A. M. Walczak, Flocking and turning: A new model for self-organized collective motion, J. Stat. Phys., 158 (2015), 601-627.
doi: 10.1007/s10955-014-1119-3.![]() ![]() ![]() |
[19] |
Y.-P. Choi, S.-Y. Ha and J. Kim, Propagation of regularity and finite-time collisions for the thermomechanical Cucker-Smale model with a singular communication, Netw. Heterog. Media, 13 (2018), 379-407.
doi: 10.3934/nhm.2018017.![]() ![]() ![]() |
[20] |
Y.-P. Choi, S.-Y. Ha, S. Jung and Y. Kim, Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model, Physica D, 241 (2012), 735-754.
doi: 10.1016/j.physd.2011.11.011.![]() ![]() ![]() |
[21] |
T. Champion, L. D. Pascale and P. Juutinen, The $\infty$-Wasserstein distance: Local solutions and existence of optimal transport maps, SIAM J. Math. Anal., 40 (2008), 1-20.
doi: 10.1137/07069938X.![]() ![]() ![]() |
[22] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
[23] |
P. Degond and S. Motsch, Large scale dynamics of the persistent turning walker model of fish behavior, J. Stat. Phys., 131 (2008), 989-1022.
doi: 10.1007/s10955-008-9529-8.![]() ![]() ![]() |
[24] |
P. Degond and S. Motsch, Continuum limit of self-driven particles with orientation interaction, Math. Models Methods Appl. Sci., 18 (2008), 1193-1215.
doi: 10.1142/S0218202508003005.![]() ![]() ![]() |
[25] |
R. Dobrushin, Vlasov equations, Funct. Anal. Appl., 13 (1979), 115-123.
doi: 10.1007/BF01077243.![]() ![]() ![]() |
[26] |
J.-G. Dong and X. Xue, Synchronization analysis of Kuramoto oscillators, Commun. Math. Sci., 11 (2013), 465-480.
doi: 10.4310/CMS.2013.v11.n2.a7.![]() ![]() ![]() |
[27] |
F. Dörfler and F. Bullo, Synchronization in complex networks of phase oscillators: A survey, Automatica, 50 (2014), 1539-1564.
doi: 10.1016/j.automatica.2014.04.012.![]() ![]() ![]() |
[28] |
F. Dörfler and F. Bullo, On the critical coupling for Kuramoto oscillators, SIAM. J. Appl. Dyn. Syst., 10 (2011), 1070-1099.
doi: 10.1137/10081530X.![]() ![]() ![]() |
[29] |
R. Duan, M. Fornasier and G. Toscani, A kinetic flocking model with diffusion, Comm. Math. Phys., 300 (2010), 95-145.
doi: 10.1007/s00220-010-1110-z.![]() ![]() ![]() |
[30] |
S.-Y. Ha, J. Jung, J. Kim, J. Park and X. Zhang, Emergent behaviors of the swarmalator model for position-phase aggregation, Math. Models Methods Appl. Sci., 29 (2019), 2225-2269.
doi: 10.1142/S0218202519500453.![]() ![]() ![]() |
[31] |
S.-Y. Ha, H. K. Kim and S. W. Ryoo, Emergence of phase-locked states for the Kuramoto model in a large coupling regime, Commun. Math. Sci., 14 (2016), 1073-1091.
doi: 10.4310/CMS.2016.v14.n4.a10.![]() ![]() ![]() |
[32] |
S.-Y. Ha, J. Kim, P. Pickl and X. Zhang, A probabilistic approach for the mean-field limit to the Cucker-Smale model with a singular communication, Kinet. Relat. Models, 12 (2019), 1045-1067.
doi: 10.3934/krm.2019039.![]() ![]() ![]() |
[33] |
S.-Y. Ha, D. Ko, J. Park and X. Zhang, Collective synchronization of classical and quantum oscillators, EMS Surveys in Mathematical Sciences, 3 (2016), 209-267.
doi: 10.4171/EMSS/17.![]() ![]() ![]() |
[34] |
S.-Y. Ha and J.-G. Liu, A simple proof of Cucker-Smale flocking dynamics and mean–field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2.![]() ![]() ![]() |
[35] |
S.-Y. Ha and T. Ruggeri, Emergent dynamics of a thermodynamically consistent particle model, Arch. Ration. Mech. Anal., 223 (2017), 1397-1425.
doi: 10.1007/s00205-016-1062-3.![]() ![]() ![]() |
[36] |
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic description of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415.![]() ![]() ![]() |
[37] |
P.-E. Jabin, A review of the mean field limits for Vlasov equations, Kinet. Relat. Models, 7 (2014), 661-711.
doi: 10.3934/krm.2014.7.661.![]() ![]() ![]() |
[38] |
P.-E. Jabin and Z. Wang, Quantitative estimates of propagation of chaos for stochastic systems with $W^{-1, \infty}$ kernels, Invent. Math., 214 (2018), 523-591.
doi: 10.1007/s00222-018-0808-y.![]() ![]() ![]() |
[39] |
Y. Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International Symposium on Mathematical Problems in Mathematical Physics, Lecture Notes in Theoretical Physics, 30 (1975), 420–422.
doi: 10.1007/BFb0013365.![]() ![]() ![]() |
[40] |
D. Lazarovici and P. Pickl, A mean field limit for the Vlasov-Poisson system, Arch. Ration. Mech. Anal., 225 (2017), 1201-1231.
doi: 10.1007/s00205-017-1125-0.![]() ![]() ![]() |
[41] |
G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., 86 (2006), 68-79.
doi: 10.1016/j.matpur.2006.01.005.![]() ![]() ![]() |
[42] |
S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621.
doi: 10.1137/120901866.![]() ![]() ![]() |
[43] |
S. Motsch and E. Tadmor, A new model for self-organized dynamics and its flocking behavior, J. Stat. Phys., 144 (2011), 923-947.
doi: 10.1007/s10955-011-0285-9.![]() ![]() ![]() |
[44] |
H. Neunzert, An introduction to the nonlinear Boltzmann-Vlasov equation, in Kinetic Theories and the Boltzmann Equation (ed. C. Cercignani), Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1048 (1984), 60–110.
doi: 10.1007/BFb0071878.![]() ![]() ![]() |
[45] |
K. P. O'Keeffe, J. H. Evers and T. Kolokolnikov, Ring states in swarmalator systems, Phys. Rev. E, 98 (2018), 022203.
doi: 10.1103/PhysRevE.98.022203.![]() ![]() |
[46] |
K. P. O'Keeffe, H. Hong and S. H. Strogatz, Oscillators that sync and swarm, Nature Communications, 8 (2017), 1504.
doi: 10.1038/s41467-017-01190-3.![]() ![]() |
[47] |
D. A. Paley, N. E. Leonard, R. Sepulchre, D. Grunbaum and J. K. Parrish, Oscillator models and collective motion, IEEE Control Syst. Mag., 27 (2007), 89-105.
![]() |
[48] |
J. Park, D. Poyato and J. Soler, Filippov trajectories and clustering in the Kuramoto model with singular couplings, J. Eur. Math. Soc., to appear, arXiv: 1809.04307.
![]() |
[49] |
A. Pikovsky, M. Rosenblum and J. Kurths, Synchronization: A universal concept in nonlinear sciences, Cambridge University Press, Cambridge, 2001.
doi: 10.1017/CBO9780511755743.![]() ![]() ![]() |
[50] |
S. Serfaty, Mean field limit for Coulomb-type flows, Duke Math. J., 169 (2020), 2887-2935.
doi: 10.1215/00127094-2020-0019.![]() ![]() ![]() |
[51] |
J. Toner and Y. Tu, Flocks, herds and Schools: A quantitative theory of flocking, Phys. Rev. E, 58 (1988), 4828-4858.
doi: 10.1103/PhysRevE.58.4828.![]() ![]() ![]() |
[52] |
T. Vicsek and A. Zefeiris, Collective motion, Phys. Rep., 517 (2012), 71-140.
doi: 10.1016/j.physrep.2012.03.004.![]() ![]() |
[53] |
T. Vicsek, Czirók, E. Ben-Jacob, I. Cohen and O. Schochet, Novel type of phase transition in a system of self-driven particles, Phys. Rev. Lett., 75 (1995), 1226-1229.
doi: 10.1103/PhysRevLett.75.1226.![]() ![]() ![]() |
[54] |
A. T. Winfree, Biological rhythms and the behavior of populations of coupled oscillators, J. Theor. Biol., 16 (1967), 15-42.
doi: 10.1016/0022-5193(67)90051-3.![]() ![]() |