doi: 10.3934/krm.2021021

On time decay for the spherically symmetric Vlasov-Poisson system

Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA, https://www.cmu.edu/math/people/faculty/schaeffer-j.html

In memory of Robert Glassey

Received  April 2021 Early access  June 2021

A collisionless plasma is modeled by the Vlasov-Poisson system. Solutions in three space dimensions that have smooth, compactly supported initial data with spherical symmetry are considered. An improved field estimate is presented that is based on decay estimates obtained by Illner and Rein. Then some estimates are presented that ensure only particles with sufficiently small velocity can be found within a certain (time dependent) ball.

Citation: Jack Schaeffer. On time decay for the spherically symmetric Vlasov-Poisson system. Kinetic & Related Models, doi: 10.3934/krm.2021021
References:
[1]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in $3$ space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118.  doi: 10.1016/S0294-1449(16)30405-X.  Google Scholar

[2]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342–364. doi: 10.1016/0022-0396(77)90049-3.  Google Scholar

[3]

J. BattM. Kunze and G. Rein, On the asymptotic behavior of a one-dimensional, monocharged plasma and a rescaling method, Adv. Differential Equations, 3 (1998), 271-292.   Google Scholar

[4]

J. R. BurganM. R. FeixE. Fijalkow and A. Munier, Self-similar and asymptotic solutions for a one-dimensional Vlasov beam, J. Plasma Physics, 29 (1983), 139-142.  doi: 10.1017/S0022377800000635.  Google Scholar

[5]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM: Philadelphia, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[6]

R. GlasseyS. Pankavich and J. Schaeffer, Decay in time for a one-dimensional, two component plasma, Math. Meth. Appl. Sci., 31 (2008), 2115-2132.  doi: 10.1002/mma.1015.  Google Scholar

[7]

R. GlasseyS. Pankavich and J. Schaeffer, Large time behavior of the relativistic Vlasov Maxwell system in low space dimension, Diff. Integral Equations, 23 (2010), 61-77.   Google Scholar

[8]

R. GlasseyS. Pankavich and J. Schaeffer, On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinet. Relat. Models, 2 (2009), 465-488.  doi: 10.3934/krm.2009.2.465.  Google Scholar

[9]

E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov-equation, parts Ⅰ and Ⅱ, Math. Meth. appl. Sci., 3 (1981), 229–248, and 4 (1982), 19–32. doi: 10.1002/mma.1670030117.  Google Scholar

[10]

E. Horst, Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.  doi: 10.1007/BF02125703.  Google Scholar

[11]

R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Meth. Appl. Sci., 19 (1996), 1409-1413.  doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2.  Google Scholar

[12]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the $3$-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[13]

S. Pankavich, Exact large time behavior of Spherically-Symmetric plasmas, https://arXiv.org/abs/2006.11447 Google Scholar

[14]

B. Perthame, Time decay, propagation of low moments and dispersive effects for kinetic equations, Comm. Partial Differential Equations, 21 (1996), 659-686.   Google Scholar

[15]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eqns., 95 (1992), 281-303.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[16]

G. Rein, Collisionless Kinetic Equations from Astrophysics – The Vlasov-Poisson System, in Handbook of Differential Equations, Evolutionary Equations, Vol. Ⅲ, 383–476, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[17]

J. Schaeffer, Large-time behavior of a one-dimensional monocharged plasma, Differential Integral Equations, 20 (2007), 277-292.   Google Scholar

show all references

References:
[1]

C. Bardos and P. Degond, Global existence for the Vlasov-Poisson equation in $3$ space variables with small initial data, Ann. Inst. H. Poincaré Anal. Non Linéaire, 2 (1985), 101-118.  doi: 10.1016/S0294-1449(16)30405-X.  Google Scholar

[2]

J. Batt, Global symmetric solutions of the initial value problem of stellar dynamics, J. Differential Equations, 25 (1977), 342–364. doi: 10.1016/0022-0396(77)90049-3.  Google Scholar

[3]

J. BattM. Kunze and G. Rein, On the asymptotic behavior of a one-dimensional, monocharged plasma and a rescaling method, Adv. Differential Equations, 3 (1998), 271-292.   Google Scholar

[4]

J. R. BurganM. R. FeixE. Fijalkow and A. Munier, Self-similar and asymptotic solutions for a one-dimensional Vlasov beam, J. Plasma Physics, 29 (1983), 139-142.  doi: 10.1017/S0022377800000635.  Google Scholar

[5]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, SIAM: Philadelphia, 1996. doi: 10.1137/1.9781611971477.  Google Scholar

[6]

R. GlasseyS. Pankavich and J. Schaeffer, Decay in time for a one-dimensional, two component plasma, Math. Meth. Appl. Sci., 31 (2008), 2115-2132.  doi: 10.1002/mma.1015.  Google Scholar

[7]

R. GlasseyS. Pankavich and J. Schaeffer, Large time behavior of the relativistic Vlasov Maxwell system in low space dimension, Diff. Integral Equations, 23 (2010), 61-77.   Google Scholar

[8]

R. GlasseyS. Pankavich and J. Schaeffer, On long-time behavior of monocharged and neutral plasma in one and one-half dimensions, Kinet. Relat. Models, 2 (2009), 465-488.  doi: 10.3934/krm.2009.2.465.  Google Scholar

[9]

E. Horst, On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov-equation, parts Ⅰ and Ⅱ, Math. Meth. appl. Sci., 3 (1981), 229–248, and 4 (1982), 19–32. doi: 10.1002/mma.1670030117.  Google Scholar

[10]

E. Horst, Symmetric plasmas and their decay, Comm. Math. Phys., 126 (1990), 613-633.  doi: 10.1007/BF02125703.  Google Scholar

[11]

R. Illner and G. Rein, Time decay of the solutions of the Vlasov-Poisson system in the plasma physical case, Math. Meth. Appl. Sci., 19 (1996), 1409-1413.  doi: 10.1002/(SICI)1099-1476(19961125)19:17<1409::AID-MMA836>3.0.CO;2-2.  Google Scholar

[12]

P.-L. Lions and B. Perthame, Propagation of moments and regularity for the $3$-dimensional Vlasov-Poisson system, Invent. Math., 105 (1991), 415-430.  doi: 10.1007/BF01232273.  Google Scholar

[13]

S. Pankavich, Exact large time behavior of Spherically-Symmetric plasmas, https://arXiv.org/abs/2006.11447 Google Scholar

[14]

B. Perthame, Time decay, propagation of low moments and dispersive effects for kinetic equations, Comm. Partial Differential Equations, 21 (1996), 659-686.   Google Scholar

[15]

K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Diff. Eqns., 95 (1992), 281-303.  doi: 10.1016/0022-0396(92)90033-J.  Google Scholar

[16]

G. Rein, Collisionless Kinetic Equations from Astrophysics – The Vlasov-Poisson System, in Handbook of Differential Equations, Evolutionary Equations, Vol. Ⅲ, 383–476, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007. doi: 10.1016/S1874-5717(07)80008-9.  Google Scholar

[17]

J. Schaeffer, Large-time behavior of a one-dimensional monocharged plasma, Differential Integral Equations, 20 (2007), 277-292.   Google Scholar

[1]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic & Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[2]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic & Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[3]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic & Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[4]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[5]

Katherine Zhiyuan Zhang. Focusing solutions of the Vlasov-Poisson system. Kinetic & Related Models, 2019, 12 (6) : 1313-1327. doi: 10.3934/krm.2019051

[6]

Blanca Ayuso, José A. Carrillo, Chi-Wang Shu. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinetic & Related Models, 2011, 4 (4) : 955-989. doi: 10.3934/krm.2011.4.955

[7]

Jack Schaeffer. Global existence for the Vlasov-Poisson system with steady spatial asymptotic behavior. Kinetic & Related Models, 2012, 5 (1) : 129-153. doi: 10.3934/krm.2012.5.129

[8]

Gianluca Crippa, Silvia Ligabue, Chiara Saffirio. Lagrangian solutions to the Vlasov-Poisson system with a point charge. Kinetic & Related Models, 2018, 11 (6) : 1277-1299. doi: 10.3934/krm.2018050

[9]

Zili Chen, Xiuting Li, Xianwen Zhang. The two dimensional Vlasov-Poisson system with steady spatial asymptotics. Kinetic & Related Models, 2017, 10 (4) : 977-1009. doi: 10.3934/krm.2017039

[10]

Meixia Xiao, Xianwen Zhang. On global solutions to the Vlasov-Poisson system with radiation damping. Kinetic & Related Models, 2018, 11 (5) : 1183-1209. doi: 10.3934/krm.2018046

[11]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete & Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[12]

Gerhard Rein, Christopher Straub. On the transport operators arising from linearizing the Vlasov-Poisson or Einstein-Vlasov system about isotropic steady states. Kinetic & Related Models, 2020, 13 (5) : 933-949. doi: 10.3934/krm.2020032

[13]

Joackim Bernier, Michel Mehrenberger. Long-time behavior of second order linearized Vlasov-Poisson equations near a homogeneous equilibrium. Kinetic & Related Models, 2020, 13 (1) : 129-168. doi: 10.3934/krm.2020005

[14]

Hyung Ju Hwang, Jaewoo Jung, Juan J. L. Velázquez. On global existence of classical solutions for the Vlasov-Poisson system in convex bounded domains. Discrete & Continuous Dynamical Systems, 2013, 33 (2) : 723-737. doi: 10.3934/dcds.2013.33.723

[15]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete & Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

[16]

Dongming Wei. 1D Vlasov-Poisson equations with electron sheet initial data. Kinetic & Related Models, 2010, 3 (4) : 729-754. doi: 10.3934/krm.2010.3.729

[17]

Mihaï Bostan. Asymptotic behavior for the Vlasov-Poisson equations with strong uniform magnetic field and general initial conditions. Kinetic & Related Models, 2020, 13 (3) : 531-548. doi: 10.3934/krm.2020018

[18]

Trinh T. Nguyen. Derivative estimates for screened Vlasov-Poisson system around Penrose-stable equilibria. Kinetic & Related Models, 2020, 13 (6) : 1193-1218. doi: 10.3934/krm.2020043

[19]

Megan Griffin-Pickering, Mikaela Iacobelli. Global strong solutions in $ {\mathbb{R}}^3 $ for ionic Vlasov-Poisson systems. Kinetic & Related Models, 2021, 14 (4) : 571-597. doi: 10.3934/krm.2021016

[20]

Christophe Pallard. Growth estimates and uniform decay for a collisionless plasma. Kinetic & Related Models, 2011, 4 (2) : 549-567. doi: 10.3934/krm.2011.4.549

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (38)
  • HTML views (113)
  • Cited by (0)

Other articles
by authors

[Back to Top]