We consider the modeling of light beams propagating in highly forward-peaked turbulent media by fractional Fokker-Planck equations and their approximations by fractional Fermi pencil beam models. We obtain an error estimate in a 1-Wasserstein distance for the latter model showing that beam spreading is well captured by the Fermi pencil-beam approximation in the small diffusion limit.
Citation: |
[1] |
R. Alexandre, Fractional order kinetic equations and hypoellipticity, Anal. Appl. (Singap.), 10 (2012), 237-247.
doi: 10.1142/S021953051250011X.![]() ![]() ![]() |
[2] |
R. Alonso and W. Sun, The radiative transfer equation in the forward-peaked regime, Comm. Math. Phys., 338 (2015), 1233-1286.
doi: 10.1007/s00220-015-2395-8.![]() ![]() ![]() |
[3] |
S. Armstrong and J. C. Mourrat, Variational methods for the kinetic Fokker-Planck equation, Preprint, arXiv: 1902.04037, 2019.
![]() |
[4] |
G. Bal, Inverse transport theory and applications, Inverse Problems, 25 (2009), 053001.
doi: 10.1088/0266-5611/25/5/053001.![]() ![]() ![]() |
[5] |
G. Bal and A. Jollivet, Generalized stability estimates in inverse transport theory, Inverse Probl. Imaging, 12 (2018), 59-90.
doi: 10.3934/ipi.2018003.![]() ![]() ![]() |
[6] |
G. Bal, T. Komorowski and L. Ryzhik, Kinetic limits for waves in a random medium, Kinet. Relat. Models, 3 (2010), 529-644.
doi: 10.3934/krm.2010.3.529.![]() ![]() ![]() |
[7] |
G. Bal and B. Palacios, Pencil-beam approximation of stationary Fokker–Planck, SIAM J. Math. Anal., 52 (2020), 3487-3519.
doi: 10.1137/19M1295775.![]() ![]() ![]() |
[8] |
C. Bardos, Problèmes aux limites pour les équations aux dérivées partielles due premier ordre a coefficients réels; théorèmes d'approximation application a l'équation de transport, Ann. Sci. École Norm. Sup., 3 (1970), 185-233.
doi: 10.24033/asens.1190.![]() ![]() ![]() |
[9] |
C. Börgers and E. W. Larsen, Asymptotic derivation of the Fermi pencil-beam approximation, Nuclear Science and Engineering, 123 (1996), 343-357.
![]() |
[10] |
C. Börgers and E. W. Larsen, On the accuracy of the Fokker-Planck and Fermi pencil beam equations for charged particle transport, Medical Physics, 23 (1996), 1749-1759.
![]() |
[11] |
F. Bouchut, Hypoelliptic regularity in kinetic equations, J. Math. Pures Appl., 81 (2002), 1135-1159.
doi: 10.1016/S0021-7824(02)01264-3.![]() ![]() ![]() |
[12] |
J. Brunken and K. Smetana, Stable and efficient Petrov–Galerkin methods for a kinetic Fokker-Planck equation, preprint, arXiv: 2010.15784, 2020.
![]() |
[13] |
E. Cueva, M. Courdurier, A. Osses, V. Castañeda, B. Palacios and S. Härtel, Mathematical modeling for 2D light-sheet fluorescence microscopy image reconstruction, Inverse Problems, 36 (2020), 075005, 27 pp.
doi: 10.1088/1361-6420/ab80d8.![]() ![]() ![]() |
[14] |
R. Dautray and J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology: Volume 6 Evolution Problems II, Springer Science & Business Media, 2012.
![]() |
[15] |
E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521-573.
doi: 10.1016/j.bulsci.2011.12.004.![]() ![]() ![]() |
[16] |
L. C. Evans, Partial Differential Equations, Vol. 19, American Mathematical Soc., 1998.
![]() ![]() |
[17] |
C. Gomez, O. Pinaud and L. Ryzhik, Hypoelliptic estimates in radiative transfer, Comm. Partial Differential Equations, 41 (2016), 150-184.
doi: 10.1080/03605302.2015.1096287.![]() ![]() ![]() |
[18] |
C. Gomez, O. Pinaud and L. Ryzhik, Radiative transfer with long-range interactions: regularity and asymptotics, Multiscale Model. Simul., 15 (2017), 1048-1072.
doi: 10.1137/15M1047076.![]() ![]() ![]() |
[19] |
F. Hanson, I. Bendall, C. Deckard and H. Haidar, Off-axis detection and characterization of laser beams in the maritime atmosphere, Applied Optics, 50 (2011), 3050-3056.
doi: 10.1364/AO.50.003050.![]() ![]() |
[20] |
L. G. Henyey and J. L. Greenstein, Diffuse radiation in the galaxy, The Astrophysical Journal, 93 (1941), 70-83.
doi: 10.1086/144246.![]() ![]() |
[21] |
H. J. Hwang, J. Jang and J. Jung, On the kinetic Fokker–Planck equation in a half-space with absorbing barriers, Indiana Univ. Math. J., 64 (2015), 1767-1804.
doi: 10.1512/iumj.2015.64.5679.![]() ![]() ![]() |
[22] |
C. Imbert and L. Silvestre, The weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc., 22 (2020), 507-592.
doi: 10.4171/jems/928.![]() ![]() ![]() |
[23] |
C. Imbert and L. Silvestre, The Schauder estimate for kinetic integral equations, Anal. PDE, 14 (2021), 171-204.
doi: 10.2140/apde.2021.14.171.![]() ![]() ![]() |
[24] |
C. Imbert and L. Silvestre, Global regularity estimates for the Boltzmann equation without cut-off, arXiv preprint, arXiv: 1909.12729v1, 2019.
![]() |
[25] |
A. D. Kim and J. B. Keller, Light propagation in biological tissue, JOSA A, 20 (2003), 92-98.
doi: 10.1364/JOSAA.20.000092.![]() ![]() |
[26] |
C. L. Leakeas and E. W. Larsen, Generalized Fokker-Planck approximations of particle transport with highly forward-peaked scattering, Nuclear Science and Engineering, 137 (2001), 236-250.
doi: 10.13182/NSE01-A2189.![]() ![]() |
[27] |
J. L. Lions, Equations Différentielles Opérationnelles et Problèmes aux Limites, Vol. 1a1, Springer-Verlag, 2013.
![]() |
[28] |
E. Olbrant and M. Frank, Generalized Fokker-Planck theory for electron and photon transport in biological tissues: Application to radiotherapy, Comput. Math. Methods Med., 11 (2010), 313-339.
doi: 10.1080/1748670X.2010.491828.![]() ![]() ![]() |
[29] |
G. C. Pomraning, The Fokker-Planck operator as an asymptotic limit, Math. Models Methods Appl. Sci., 2 (1992), 21-36.
doi: 10.1142/S021820259200003X.![]() ![]() ![]() |
[30] |
N. Roy and F. Reid, Off-axis laser detection model in coastal areas, Optical Engineering, 47 (2008), 086002.
doi: 10.1117/1.2969119.![]() ![]() |
[31] |
L. F. Stokols, Hölder continuity for a family of nonlocal hypoelliptic kinetic equations, SIAM J. Math. Anal., 51 (2019), 4815-4847.
doi: 10.1137/18M1234953.![]() ![]() ![]() |