Various flocking results have been established for the delayed Cucker-Smale model, especially in the long range communication case. However, the short range communication case is more realistic due to the limited communication ability. In this case, the non-flocking behavior can be frequently observed in numerical simulations. Furthermore, it has potential applications in many practical situations, such as the opinion disagreement in society, fish flock breaking and so on. Therefore, we firstly consider the non-flocking behavior of the delayed Cucker$ - $Smale model. Based on a key inequality of position variance, a simple sufficient condition of the initial data to the non-flocking behavior is established. Then, for general communication weights we obtain a flocking result, which also depends upon the initial data in the short range communication case. Finally, with no restriction on the initial data we further establish other large time behavior of classical solutions.
Citation: |
[1] |
M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and optimal control of the Cucker$-$Smale model, Math. Cont. Related Fields, 3 (2013), 447-466.
doi: 10.3934/mcrf.2013.3.447.![]() ![]() ![]() |
[2] |
M. Caponigro, M. Fornasier, B. Piccoli and E. Trélat, Sparse stabilization and control of alignment models, Math. Models Methods Appl. Sci., 25 (2015), 521-564.
doi: 10.1142/S0218202515400059.![]() ![]() ![]() |
[3] |
J. A. Carrillo, Y.-P. Choi, P. B. Mucha and J. Peszek, Sharp conditions to avoid collisions in singular Cucker$-$Smale interactions, Nonlinear Anal. Real World Appl., 37 (2017), 317-328.
doi: 10.1016/j.nonrwa.2017.02.017.![]() ![]() ![]() |
[4] |
J. A. Carrillo, M. Fornasier, J. Rosado and G. Toscani, Asymptotic flocking dynamics for the kinetic Cucker$-$Smale model, SIAM J. Math. Anal., 42 (2010), 218-236.
doi: 10.1137/090757290.![]() ![]() ![]() |
[5] |
Z. Chen and X. Yin, The kinetic Cucker$-$Smale model: Well-posedness and asymptotic behavior, SIAM J. Math. Anal., 51 (2019), 3819-3853.
doi: 10.1137/18M1215001.![]() ![]() ![]() |
[6] |
J. Cheng, Z. Li and J. Wu, Flocking in a two-agent Cucker$-$Smale model with large delay, Proc. Amer. Math. Soc., 149 (2021), 1711–1721.
doi: 10.1090/proc/15295.![]() ![]() ![]() |
[7] |
J. Cho, S.-Y. Ha, F. Huang, C. Jin and D. Ko, Emergence of bi-cluster flocking for the Cucker$-$Smale model, Math. Models Methods Appl. Sci., 26 (2016), 1191-1218.
doi: 10.1142/S0218202516500287.![]() ![]() ![]() |
[8] |
Y.-P. Choi and J. Haskovec, Cucker$-$Smale model with normalized communication weights and time delay, Kinet. Relat. Models, 10 (2017), 1011-1033.
doi: 10.3934/krm.2017040.![]() ![]() ![]() |
[9] |
Y.-P. Choi and J. Haskovec, Hydrodynamic Cucker$-$Smale model with normalized communication weights and time delay, SIAM J. Math. Anal., 51 (2019), 2660-2685.
doi: 10.1137/17M1139151.![]() ![]() ![]() |
[10] |
Y.-P. Choi and Z. Li, Emergent behavior of Cucker$-$Smale flocking particles with heterogeneous time delays, Appl. Math. Lett., 86 (2018), 49-56.
doi: 10.1016/j.aml.2018.06.018.![]() ![]() ![]() |
[11] |
F. Cucker and C. Huepe, Flocking with informed agents, Math. Action, 1 (2008), 1-25.
doi: 10.5802/msia.1.![]() ![]() ![]() |
[12] |
F. Cucker and E. Mordecki, Flocking in noisy environments, J. Math. Pures Appl., 89 (2008), 278-296.
doi: 10.1016/j.matpur.2007.12.002.![]() ![]() ![]() |
[13] |
F. Cucker and S. Smale, Emergent behavior in flocks, IEEE Trans. Automat. Control, 52 (2007), 852-862.
doi: 10.1109/TAC.2007.895842.![]() ![]() ![]() |
[14] |
R. Erban, J. Haškovec and Y. Sun, A Cucker$-$Smale model with noise and delay, SIAM J. Appl. Math., 76 (2016), 1535-1557.
doi: 10.1137/15M1030467.![]() ![]() ![]() |
[15] |
M. Fornasier, J. Haskovec and G. Toscani, Fluid dynamic description of flocking via the Povzner$-$Boltzmann equation, Phys. D, 240 (2011), 21-31.
doi: 10.1016/j.physd.2010.08.003.![]() ![]() ![]() |
[16] |
S.-Y. Ha, J. Kim, J. Park and X. Zhang, Complete cluster predictability of the Cucker$-$Smale flocking model on the real line, Arch. Ration. Mech. Anal., 231 (2019), 319-365.
doi: 10.1007/s00205-018-1281-x.![]() ![]() ![]() |
[17] |
S.-Y. Ha, D. Ko and Y. Zhang, Critical coupling strength of the Cucker$-$Smale model for flocking, Math. Models Methods Appl. Sci., 27 (2017), 1051-1087.
doi: 10.1142/S0218202517400097.![]() ![]() ![]() |
[18] |
S.-Y. Ha, K. Lee and D. Levy, Emergence of time-asymptotic flocking in a stochastic Cucker$-$Smale system, Commun. Math. Sci., 7 (2009), 453-469.
doi: 10.4310/CMS.2009.v7.n2.a9.![]() ![]() ![]() |
[19] |
S.-Y. Ha and J.-G. Liu, A simple proof of the Cucker$-$Smale flocking dynamics and mean-field limit, Commun. Math. Sci., 7 (2009), 297-325.
doi: 10.4310/CMS.2009.v7.n2.a2.![]() ![]() ![]() |
[20] |
S.-Y. Ha and E. Tadmor, From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, 1 (2008), 415-435.
doi: 10.3934/krm.2008.1.415.![]() ![]() ![]() |
[21] |
J. Haskovec, A simple proof of asymptotic consensus in the Hegselmann$-$Krause and Cucker$-$Smale models with normalization and delay, SIAM J. Appl. Dyn. Syst., 20 (2021), 130-148.
doi: 10.1137/20M1341350.![]() ![]() ![]() |
[22] |
J. Haskovec and I. Markou, Asymptotic flocking in the Cucker$-$Smale model with reaction-type delays in the non-oscillatory regime, Kinet. Relat. Models, 13 (2020), 795-813.
doi: 10.3934/krm.2020027.![]() ![]() ![]() |
[23] |
J. Haskovec and I. Markou, Exponential asymptotic flocking in the Cucker$-$Smale model with distributed reaction delays, Math. Biosci. Eng., 17 (2020), 5651–5671.
doi: 10.3934/mbe.2020304.![]() ![]() ![]() |
[24] |
Y. Liu and J. Wu, Flocking and asymptotic velocity of the Cucker$-$Smale model with processing delay, J. Math. Anal. Appl., 415 (2014), 53-61.
doi: 10.1016/j.jmaa.2014.01.036.![]() ![]() ![]() |
[25] |
S. Motsch and E. Tadmor, Heterophilious dynamics enhances consensus, SIAM Rev., 56 (2014), 577-621.
doi: 10.1137/120901866.![]() ![]() ![]() |
[26] |
P. B. Mucha and J. Peszek, The Cucker$-$Smale equation: Singular communication weight, measure-valued solutions and weak-atomic uniqueness, Arch. Ration. Mech. Anal., 227 (2018), 273-308.
doi: 10.1007/s00205-017-1160-x.![]() ![]() ![]() |
[27] |
J. Peszek, Existence of piecewise weak solutions of a discrete Cucker$-$Smale's flocking model with a singular communication weight, J. Differ. Equ., 257 (2014), 2900-2925.
doi: 10.1016/j.jde.2014.06.003.![]() ![]() ![]() |
[28] |
J. Peszek, Discrete Cucker$-$Smale flocking model with a weakly singular weight, SIAM J. Math. Anal., 47 (2015), 3671-3686.
doi: 10.1137/15M1009299.![]() ![]() ![]() |
[29] |
B. Piccoli, F. Rossi and F. Trélat, Control to flocking of the kinetic Cucker$-$Smale model, SIAM J. Math. Anal., 47 (2015), 4685-4719.
doi: 10.1137/140996501.![]() ![]() ![]() |
[30] |
C. Pignotti and E. Trélat, Convergence to consensus of the general finite-dimensional Cucker$-$Smale model with time-varying delays, Commun. Math. Sci., 16 (2018), 2053-2076.
doi: 10.4310/CMS.2018.v16.n8.a1.![]() ![]() ![]() |
[31] |
C. Pignotti and I. R. Vallejo, Flocking estimates for the Cucker$-$Smale model with time lag and hierarchical leadership, J. Math. Anal. Appl., 464 (2018), 1313-1332.
doi: 10.1016/j.jmaa.2018.04.070.![]() ![]() ![]() |
[32] |
C. Pignotti and I. R. Vallejo, Asymptotic analysis of a Cucker$-$Smale system with leadership and distributed delay, in Trends in Control Theory and Partial Differential Equations, Springer INdAM Ser., Vol. 32, Springer, Cham, 2019,233–253.
![]() ![]() |
[33] |
J. Shen, Cuckers$-$Smale flocking under hierarchical leadership, SIAM J. Appl. Math., 68 (2007/08), 694-719.
doi: 10.1137/060673254.![]() ![]() ![]() |
[34] |
X. Yin, Z. Gao, Z. Chen and Y. Fu, Non-existence of asymptotic flocking in the Cucker$-$Smale model with short range communication weights, IEEE Trans. Automat. Control, Available from: https://ieeexplore.ieee.org/document/9370113/.
doi: 10.1109/TAC.2021.3063951.![]() ![]() |
[35] |
X. Yin, D. Yue and Z. Chen, Asymptotic behavior and collision avoidance in the Cucker$-$Smale model, IEEE Trans. Automat. Control, 65 (2020), 3112-3119.
doi: 10.1109/TAC.2019.2948473.![]() ![]() ![]() |
[36] |
X. Yin, D. Yue and S. Hu, Adaptive periodic event-triggered consensus for multi-agent systems subject to input saturation, Int. J. Control, 89 (2016), 653-667.
doi: 10.1080/00207179.2015.1088967.![]() ![]() ![]() |