February  2022, 15(1): 1-26. doi: 10.3934/krm.2021041

Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system

College of Mathematics and Information Sciences, Guangxi University, China

*Corresponding author: Mingying Zhong

Received  March 2021 Revised  August 2021 Published  February 2022 Early access  December 2021

Fund Project: The research of the author was supported by the National Science Fund for Excellent Young Scholars No. 11922107, the National Natural Science Foundation of China grants No. 11671100, and Guangxi Natural Science Foundation Nos. 2018GXNSFAA138210 and 2019JJG110010

In the present paper, we study the diffusion limit of the classical solution to the Vlasov-Poisson-Fokker-Planck (VPFP) system with initial data near a global Maxwellian. We prove the convergence and establish the optimal convergence rate of the global strong solution to the VPFP system towards the solution to the drift-diffusion-Poisson system based on the spectral analysis with precise estimation on the initial layer.

Citation: Mingying Zhong. Diffusion limit and the optimal convergence rate of the Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2022, 15 (1) : 1-26. doi: 10.3934/krm.2021041
References:
[1]

A. ArnoldP. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems, Transp. Theory Statist. Phys., 29 (2000), 571-581.  doi: 10.1080/00411450008205893.

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257.  doi: 10.1142/S0218202591000137.

[3]

P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal., 19 (1992), 1121-1136.  doi: 10.1016/0362-546X(92)90186-I.

[4]

P. Biler and J. Dolbeault, Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems, Ann. Henri Poincaré, 1 (2000), 461-472.  doi: 10.1007/S000230050003.

[5]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.

[6]

L. L. BonillaJ. A. Carrillo and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math., 57 (1997), 1343-1372.  doi: 10.1137/S0036139995291544.

[7]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal., 111 (1993), 239-258.  doi: 10.1006/jfan.1993.1011.

[8]

F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), 225-238.  doi: 10.1006/jdeq.1995.1146.

[9]

F. Bouchut and J. Dolbeault, On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514. 

[10]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.  doi: 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.0.CO;2-W.

[11]

J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839.  doi: 10.1002/mma.1670181006.

[12]

J. A. CarrilloJ. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), 99-132.  doi: 10.1006/jfan.1996.0123.

[13]

N. El Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.

[14]

R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl. (9), 54 (1975), 125-156. 

[15]

W. Fang and K. Ito, On the time-dependent drift-diffusion model for semiconductors, J. Differential Equations, 117 (1995), 245-280.  doi: 10.1006/jdeq.1995.1054.

[16]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15 (2005), 737-752.  doi: 10.1142/S021820250500056X.

[17]

T. GoudonJ. NietoF. Poupaud and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 213 (2005), 418-442.  doi: 10.1016/j.jde.2004.09.008.

[18]

H. J. Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691.  doi: 10.3934/dcdsb.2013.18.681.

[19]

A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations and their Applications, 41, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8334-4.

[20]

A. Krzywicki and T. A. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math., 50 (1992), 105-107.  doi: 10.1090/qam/1146626.

[21]

H.-L. LiT. YangJ. Sun and M. Zhong, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations, Sci. Sin. Math., 46 (2016), 981-1004.  doi: 10.1360/N012015-00230.

[22]

H.-L. LiT. Yang and M. Zhong, Diffusion limit of the Vlasov-Poisson-Boltzmann system, Kinet. Relat. Models, 14 (2021), 211-255.  doi: 10.3934/krm.2021003.

[23]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 241 (2021), 311-355.  doi: 10.1007/s00205-021-01652-5.

[24]

L. Luo and H. Yu, Spectrum analysis of the linear Fokker-Planck equation, Anal. Appl. (Singap.), 15 (2017), 313-331.  doi: 10.1142/S0219530515500219.

[25]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.

[26]

J. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. Lond., 170 (1879), 231-256. 

[27]

J. NietoF. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal., 158 (2001), 29-59.  doi: 10.1007/s002050100139.

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[29]

F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.

[30]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77.  doi: 10.1016/0022-0396(92)90135-A.

[31]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, Lecture Notes Series - No. 8, Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.639.110&rep=rep1&type=pdf.

[32]

H. D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555.  doi: 10.1016/0022-247X(91)90324-S.

[33]

H. D. Victory Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), 105-156.  doi: 10.1512/iumj.1990.39.39009.

[34]

H. WuT.-C. Lin and C. Liu, Diffusion limit of kinetic equations for multiple species charged particles, Arch. Ration. Mech. Anal., 215 (2015), 419-441.  doi: 10.1007/s00205-014-0784-3.

show all references

References:
[1]

A. ArnoldP. Markowich and G. Toscani, On large time asymptotics for drift-diffusion-Poisson systems, Transp. Theory Statist. Phys., 29 (2000), 571-581.  doi: 10.1080/00411450008205893.

[2]

C. Bardos and S. Ukai, The classical incompressible Navier-Stokes limit of the Boltzmann equation, Math. Models Methods Appl. Sci., 1 (1991), 235-257.  doi: 10.1142/S0218202591000137.

[3]

P. Biler, Existence and asymptotics of solutions for a parabolic-elliptic system with nonlinear no-flux boundary conditions, Nonlinear Anal., 19 (1992), 1121-1136.  doi: 10.1016/0362-546X(92)90186-I.

[4]

P. Biler and J. Dolbeault, Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems, Ann. Henri Poincaré, 1 (2000), 461-472.  doi: 10.1007/S000230050003.

[5]

P. BilerW. Hebisch and T. Nadzieja, The Debye system: Existence and large time behavior of solutions, Nonlinear Anal., 23 (1994), 1189-1209.  doi: 10.1016/0362-546X(94)90101-5.

[6]

L. L. BonillaJ. A. Carrillo and J. Soler, Asymptotic behavior of an initial-boundary value problem for the Vlasov-Poisson-Fokker-Planck system, SIAM J. Appl. Math., 57 (1997), 1343-1372.  doi: 10.1137/S0036139995291544.

[7]

F. Bouchut, Existence and uniqueness of a global smooth solution for the Vlasov-Poisson-Fokker-Planck system in three dimensions, J. Funct. Anal., 111 (1993), 239-258.  doi: 10.1006/jfan.1993.1011.

[8]

F. Bouchut, Smoothing effect for the non-linear Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 122 (1995), 225-238.  doi: 10.1006/jdeq.1995.1146.

[9]

F. Bouchut and J. Dolbeault, On long asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials, Differential Integral Equations, 8 (1995), 487-514. 

[10]

J. A. Carrillo, Global weak solutions for the initial-boundary-value problems to the Vlasov-Poisson-Fokker-Planck system, Math. Methods Appl. Sci., 21 (1998), 907-938.  doi: 10.1002/(SICI)1099-1476(19980710)21:10<907::AID-MMA977>3.0.CO;2-W.

[11]

J. A. Carrillo and J. Soler, On the initial value problem for the Vlasov-Poisson-Fokker-Planck system with initial data in $L^p$ spaces, Math. Methods Appl. Sci., 18 (1995), 825-839.  doi: 10.1002/mma.1670181006.

[12]

J. A. CarrilloJ. Soler and J. L. Vazquez, Asymptotic behaviour and self-similarity for the three-dimensional Vlasov-Poisson-Fokker-Planck system, J. Funct. Anal., 141 (1996), 99-132.  doi: 10.1006/jfan.1996.0123.

[13]

N. El Ghani and N. Masmoudi, Diffusion limit of the Vlasov-Poisson-Fokker-Planck system, Commun. Math. Sci., 8 (2010), 463-479.  doi: 10.4310/CMS.2010.v8.n2.a9.

[14]

R. S. Ellis and M. A. Pinsky, The first and second fluid approximations to the linearized Boltzmann equation, J. Math. Pures Appl. (9), 54 (1975), 125-156. 

[15]

W. Fang and K. Ito, On the time-dependent drift-diffusion model for semiconductors, J. Differential Equations, 117 (1995), 245-280.  doi: 10.1006/jdeq.1995.1054.

[16]

T. Goudon, Hydrodynamic limit for the Vlasov-Poisson-Fokker-Planck system: Analysis of the two-dimensional case, Math. Models Methods Appl. Sci., 15 (2005), 737-752.  doi: 10.1142/S021820250500056X.

[17]

T. GoudonJ. NietoF. Poupaud and J. Soler, Multidimensional high-field limit of the electrostatic Vlasov-Poisson-Fokker-Planck system, J. Differential Equations, 213 (2005), 418-442.  doi: 10.1016/j.jde.2004.09.008.

[18]

H. J. Hwang and J. Jang, On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 681-691.  doi: 10.3934/dcdsb.2013.18.681.

[19]

A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Progress in Nonlinear Differential Equations and their Applications, 41, Birkhäuser Verlag, Basel, 2001. doi: 10.1007/978-3-0348-8334-4.

[20]

A. Krzywicki and T. A. Nadzieja, A nonstationary problem in the theory of electrolytes, Quart. Appl. Math., 50 (1992), 105-107.  doi: 10.1090/qam/1146626.

[21]

H.-L. LiT. YangJ. Sun and M. Zhong, Large time behavior of solutions to Vlasov-Poisson-Landau (Fokker-Planck) equations, Sci. Sin. Math., 46 (2016), 981-1004.  doi: 10.1360/N012015-00230.

[22]

H.-L. LiT. Yang and M. Zhong, Diffusion limit of the Vlasov-Poisson-Boltzmann system, Kinet. Relat. Models, 14 (2021), 211-255.  doi: 10.3934/krm.2021003.

[23]

H.-L. LiT. Yang and M. Zhong, Spectrum analysis for the Vlasov-Poisson-Boltzmann system, Arch. Ration. Mech. Anal., 241 (2021), 311-355.  doi: 10.1007/s00205-021-01652-5.

[24]

L. Luo and H. Yu, Spectrum analysis of the linear Fokker-Planck equation, Anal. Appl. (Singap.), 15 (2017), 313-331.  doi: 10.1142/S0219530515500219.

[25]

P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2.

[26]

J. Maxwell, On stresses in rarefied gases arising from inequalities of temperature, Phil. Trans. Roy. Soc. Lond., 170 (1879), 231-256. 

[27]

J. NietoF. Poupaud and J. Soler, High-field limit for the Vlasov-Poisson-Fokker-Planck system, Arch. Ration. Mech. Anal., 158 (2001), 29-59.  doi: 10.1007/s002050100139.

[28]

A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1.

[29]

F. Poupaud and J. Soler, Parabolic limit and stability of the Vlasov-Fokker-Planck system, Math. Models Methods Appl. Sci., 10 (2000), 1027-1045.  doi: 10.1142/S0218202500000525.

[30]

G. Rein and J. Weckler, Generic global classical solutions of the Vlasov-Fokker-Planck-Poisson system in three dimensions, J. Differential Equations, 99 (1992), 59-77.  doi: 10.1016/0022-0396(92)90135-A.

[31]

S. Ukai and T. Yang, Mathematical Theory of Boltzmann Equation, Lecture Notes Series - No. 8, Liu Bie Ju Center for Mathematical Sciences, City University of Hong Kong, 2006. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.639.110&rep=rep1&type=pdf.

[32]

H. D. Victory Jr., On the existence of global weak solutions for Vlasov-Poisson-Fokker-Planck systems, J. Math. Anal. Appl., 160 (1991), 525-555.  doi: 10.1016/0022-247X(91)90324-S.

[33]

H. D. Victory Jr. and B. P. O'Dwyer, On classical solutions of Vlasov-Poisson Fokker-Planck systems, Indiana Univ. Math. J., 39 (1990), 105-156.  doi: 10.1512/iumj.1990.39.39009.

[34]

H. WuT.-C. Lin and C. Liu, Diffusion limit of kinetic equations for multiple species charged particles, Arch. Ration. Mech. Anal., 215 (2015), 419-441.  doi: 10.1007/s00205-014-0784-3.

[1]

Yuhua Zhu. A local sensitivity and regularity analysis for the Vlasov-Poisson-Fokker-Planck system with multi-dimensional uncertainty and the spectral convergence of the stochastic Galerkin method. Networks and Heterogeneous Media, 2019, 14 (4) : 677-707. doi: 10.3934/nhm.2019027

[2]

Ling Hsiao, Fucai Li, Shu Wang. Combined quasineutral and inviscid limit of the Vlasov-Poisson-Fokker-Planck system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 579-589. doi: 10.3934/cpaa.2008.7.579

[3]

Lan Luo, Hongjun Yu. Global solutions to the relativistic Vlasov-Poisson-Fokker-Planck system. Kinetic and Related Models, 2016, 9 (2) : 393-405. doi: 10.3934/krm.2016.9.393

[4]

Kosuke Ono, Walter A. Strauss. Regular solutions of the Vlasov-Poisson-Fokker-Planck system. Discrete and Continuous Dynamical Systems, 2000, 6 (4) : 751-772. doi: 10.3934/dcds.2000.6.751

[5]

Maxime Hauray, Samir Salem. Propagation of chaos for the Vlasov-Poisson-Fokker-Planck system in 1D. Kinetic and Related Models, 2019, 12 (2) : 269-302. doi: 10.3934/krm.2019012

[6]

Hyung Ju Hwang, Juhi Jang. On the Vlasov-Poisson-Fokker-Planck equation near Maxwellian. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 681-691. doi: 10.3934/dcdsb.2013.18.681

[7]

José A. Carrillo, Young-Pil Choi, Yingping Peng. Large friction-high force fields limit for the nonlinear Vlasov–Poisson–Fokker–Planck system. Kinetic and Related Models, 2022, 15 (3) : 355-384. doi: 10.3934/krm.2021052

[8]

Hai-Liang Li, Tong Yang, Mingying Zhong. Diffusion limit of the Vlasov-Poisson-Boltzmann system. Kinetic and Related Models, 2021, 14 (2) : 211-255. doi: 10.3934/krm.2021003

[9]

Jonathan Zinsl. Exponential convergence to equilibrium in a Poisson-Nernst-Planck-type system with nonlinear diffusion. Discrete and Continuous Dynamical Systems, 2016, 36 (5) : 2915-2930. doi: 10.3934/dcds.2016.36.2915

[10]

José A. Carrillo, Renjun Duan, Ayman Moussa. Global classical solutions close to equilibrium to the Vlasov-Fokker-Planck-Euler system. Kinetic and Related Models, 2011, 4 (1) : 227-258. doi: 10.3934/krm.2011.4.227

[11]

Simone Calogero, Stephen Pankavich. On the spatially homogeneous and isotropic Einstein-Vlasov-Fokker-Planck system with cosmological scalar field. Kinetic and Related Models, 2018, 11 (5) : 1063-1083. doi: 10.3934/krm.2018041

[12]

Stephen Pankavich, Nicholas Michalowski. Global classical solutions for the "One and one-half'' dimensional relativistic Vlasov-Maxwell-Fokker-Planck system. Kinetic and Related Models, 2015, 8 (1) : 169-199. doi: 10.3934/krm.2015.8.169

[13]

Mihai Bostan, Thierry Goudon. Low field regime for the relativistic Vlasov-Maxwell-Fokker-Planck system; the one and one half dimensional case. Kinetic and Related Models, 2008, 1 (1) : 139-170. doi: 10.3934/krm.2008.1.139

[14]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic and Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[15]

Hai-Liang Li, Hongjun Yu, Mingying Zhong. Spectrum structure and optimal decay rate of the relativistic Vlasov-Poisson-Landau system. Kinetic and Related Models, 2017, 10 (4) : 1089-1125. doi: 10.3934/krm.2017043

[16]

Zhendong Fang, Hao Wang. Convergence from two-species Vlasov-Poisson-Boltzmann system to two-fluid incompressible Navier-Stokes-Fourier-Poisson system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021231

[17]

M. Pellicer, J. Solà-Morales. Spectral analysis and limit behaviours in a spring-mass system. Communications on Pure and Applied Analysis, 2008, 7 (3) : 563-577. doi: 10.3934/cpaa.2008.7.563

[18]

Roberta Bosi. Classical limit for linear and nonlinear quantum Fokker-Planck systems. Communications on Pure and Applied Analysis, 2009, 8 (3) : 845-870. doi: 10.3934/cpaa.2009.8.845

[19]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[20]

Francis Filbet, Roland Duclous, Bruno Dubroca. Analysis of a high order finite volume scheme for the 1D Vlasov-Poisson system. Discrete and Continuous Dynamical Systems - S, 2012, 5 (2) : 283-305. doi: 10.3934/dcdss.2012.5.283

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (186)
  • HTML views (162)
  • Cited by (0)

Other articles
by authors

[Back to Top]