December  2021, 14(6): 1035-1079. doi: 10.3934/krm.2021042

Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system

1. 

Univ Rennes, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France

2. 

Department of Mathematics and Statistics, University of Victoria, British Columbia, Canada

*Corresponding author: Dayton Preissl

Received  March 2021 Revised  August 2021 Published  December 2021 Early access  December 2021

Fund Project: Dayton Preissl and Slim Ibrahim were supported by NSERC grant (371637-2019)

This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function $ f(t,\cdot) $. Magnetically confined plasmas are characterized by the presence of a strong external magnetic field $ x \mapsto \epsilon^{-1} \mathbf{B}_e(x) $, where $ \epsilon $ is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent internal electromagnetic fields $ (E,B) $ are supposed to be small. In the non-magnetized setting, local $ C^1 $-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since $ \epsilon^{-1} $ is large, standard results predict that the lifetime $ T_\epsilon $ of solutions may shrink to zero when $ \epsilon $ goes to $ 0 $. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound ($ 0<T<T_\epsilon $) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows $ f $ remains at a distance $ \epsilon $ from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.

Citation: Dayton Preissl, Christophe Cheverry, Slim Ibrahim. Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system. Kinetic and Related Models, 2021, 14 (6) : 1035-1079. doi: 10.3934/krm.2021042
References:
[1]

I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 81-94.  doi: 10.1007/BF02022967.

[2]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation, Multiscale Model. Simul., 6 (2007), 1026-1058.  doi: 10.1137/070689383.

[3]

F. BouchutF. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15.  doi: 10.1007/s00205-003-0265-6.

[4]

C. Cheverry, Anomalous transport, J. Differential Equations, 262 (2017), 2987-3033.  doi: 10.1016/j.jde.2016.11.012.

[5]

C. Cheverry, Can one hear whistler waves?, Comm. Math. Phys., 338 (2015), 641–-703. doi: 10.1007/s00220-015-2389-6.

[6]

C. Cheverry and S. Ibrahim, The relativistic Vlasov Maxwell equations for strongly magnetized plasmas, Commun. Math. Sci., 18 (2020), 123-162.  doi: 10.4310/CMS.2020.v18.n1.a6.

[7]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.  doi: 10.1002/cpa.3160420603.

[8]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[9]

I. Gallagher and L. Saint Raymond, Asymptotic results for pressureless magnet–Hydrodynamics, arXiv: math/0312021.

[10]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[11]

R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.  doi: 10.1007/BF01218078.

[12]

R. T. Glassey and W. A. Strauss, Absence of shocks in an initially dilute collisionless plasma, Comm. Math. Phys., 113 (1987), 191-208. 

[13]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.

[14]

F. Golse, Distributions, analyse de Fourier, équations aux dérivées partielles, Cours de l'École Polytechnique, 2012. Available from: http://www.cmls.polytechnique.fr/perso/golse/MAT431-10/POLY431.pdf.

[15]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pure Appl. Math., 38 (1985), 321-332.  doi: 10.1002/cpa.3160380305.

[16]

S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125.  doi: 10.3934/cpaa.2002.1.103.

[17]

J. Luk and R. M. Strain, Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 219 (2016), 445-552.  doi: 10.1007/s00205-015-0899-1.

[18]

D. Preissl, The Hot, Magnetized Relativistic Vlasov Maxwell System, MSc thesis, University of Victoria, 2020. Available from: https://dspace.library.uvic.ca:8443/handle/1828/12510.

[19]

X. Wang, Global solution of the 3D relativistic Vlasov-Maxwell system for the large radial data, preprint, arXiv: 2003.14192.

[20]

X. Wang, Propagation of regularity and long time behavior of the 3D massive relativistic transport equation Ⅱ: Vlasov-Maxwell system, preprint, arXiv: 1804.06566. doi: 10.1007/s00220-021-03987-2.

show all references

References:
[1]

I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 81-94.  doi: 10.1007/BF02022967.

[2]

M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation, Multiscale Model. Simul., 6 (2007), 1026-1058.  doi: 10.1137/070689383.

[3]

F. BouchutF. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15.  doi: 10.1007/s00205-003-0265-6.

[4]

C. Cheverry, Anomalous transport, J. Differential Equations, 262 (2017), 2987-3033.  doi: 10.1016/j.jde.2016.11.012.

[5]

C. Cheverry, Can one hear whistler waves?, Comm. Math. Phys., 338 (2015), 641–-703. doi: 10.1007/s00220-015-2389-6.

[6]

C. Cheverry and S. Ibrahim, The relativistic Vlasov Maxwell equations for strongly magnetized plasmas, Commun. Math. Sci., 18 (2020), 123-162.  doi: 10.4310/CMS.2020.v18.n1.a6.

[7]

R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.  doi: 10.1002/cpa.3160420603.

[8]

L. C. Evans, Partial Differential Equations, 2$^nd$ edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.

[9]

I. Gallagher and L. Saint Raymond, Asymptotic results for pressureless magnet–Hydrodynamics, arXiv: math/0312021.

[10]

R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.

[11]

R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.  doi: 10.1007/BF01218078.

[12]

R. T. Glassey and W. A. Strauss, Absence of shocks in an initially dilute collisionless plasma, Comm. Math. Phys., 113 (1987), 191-208. 

[13]

R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.

[14]

F. Golse, Distributions, analyse de Fourier, équations aux dérivées partielles, Cours de l'École Polytechnique, 2012. Available from: http://www.cmls.polytechnique.fr/perso/golse/MAT431-10/POLY431.pdf.

[15]

S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pure Appl. Math., 38 (1985), 321-332.  doi: 10.1002/cpa.3160380305.

[16]

S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125.  doi: 10.3934/cpaa.2002.1.103.

[17]

J. Luk and R. M. Strain, Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 219 (2016), 445-552.  doi: 10.1007/s00205-015-0899-1.

[18]

D. Preissl, The Hot, Magnetized Relativistic Vlasov Maxwell System, MSc thesis, University of Victoria, 2020. Available from: https://dspace.library.uvic.ca:8443/handle/1828/12510.

[19]

X. Wang, Global solution of the 3D relativistic Vlasov-Maxwell system for the large radial data, preprint, arXiv: 2003.14192.

[20]

X. Wang, Propagation of regularity and long time behavior of the 3D massive relativistic transport equation Ⅱ: Vlasov-Maxwell system, preprint, arXiv: 1804.06566. doi: 10.1007/s00220-021-03987-2.

[1]

Baptiste Fedele, Claudia Negulescu. Numerical study of an anisotropic Vlasov equation arising in plasma physics. Kinetic and Related Models, 2018, 11 (6) : 1395-1426. doi: 10.3934/krm.2018055

[2]

Oǧul Esen, Serkan Sütlü. Matched pair analysis of the Vlasov plasma. Journal of Geometric Mechanics, 2021, 13 (2) : 209-246. doi: 10.3934/jgm.2021011

[3]

Masahiro Suzuki. Asymptotic stability of stationary solutions to the Euler-Poisson equations arising in plasma physics. Kinetic and Related Models, 2011, 4 (2) : 569-588. doi: 10.3934/krm.2011.4.569

[4]

Jean Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 361-380. doi: 10.3934/dcds.2002.8.361

[5]

Sebastian Bauer. A non-relativistic model of plasma physics containing a radiation reaction term. Kinetic and Related Models, 2018, 11 (1) : 25-42. doi: 10.3934/krm.2018002

[6]

Jessy Mallet, Stéphane Brull, Bruno Dubroca. General moment system for plasma physics based on minimum entropy principle. Kinetic and Related Models, 2015, 8 (3) : 533-558. doi: 10.3934/krm.2015.8.533

[7]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete and Continuous Dynamical Systems - S, 2021, 14 (5) : i-i. doi: 10.3934/dcdss.2020446

[8]

Johannes Eilinghoff, Roland Schnaubelt. Error analysis of an ADI splitting scheme for the inhomogeneous Maxwell equations. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 5685-5709. doi: 10.3934/dcds.2018248

[9]

Gang Bao, Bin Hu, Peijun Li, Jue Wang. Analysis of time-domain Maxwell's equations in biperiodic structures. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 259-286. doi: 10.3934/dcdsb.2019181

[10]

Jiangxing Wang. Convergence analysis of an accurate and efficient method for nonlinear Maxwell's equations. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2429-2440. doi: 10.3934/dcdsb.2020185

[11]

Laurent Boudin, Bérénice Grec, Francesco Salvarani. A mathematical and numerical analysis of the Maxwell-Stefan diffusion equations. Discrete and Continuous Dynamical Systems - B, 2012, 17 (5) : 1427-1440. doi: 10.3934/dcdsb.2012.17.1427

[12]

Martin Seehafer. A local existence result for a plasma physics model containing a fully coupled magnetic field. Kinetic and Related Models, 2009, 2 (3) : 503-520. doi: 10.3934/krm.2009.2.503

[13]

Claudia Negulescu, Anne Nouri, Philippe Ghendrih, Yanick Sarazin. Existence and uniqueness of the electric potential profile in the edge of tokamak plasmas when constrained by the plasma-wall boundary physics. Kinetic and Related Models, 2008, 1 (4) : 619-639. doi: 10.3934/krm.2008.1.619

[14]

Sergiu Klainerman, Gigliola Staffilani. A new approach to study the Vlasov-Maxwell system. Communications on Pure and Applied Analysis, 2002, 1 (1) : 103-125. doi: 10.3934/cpaa.2002.1.103

[15]

Jonathan Ben-Artzi, Stephen Pankavich, Junyong Zhang. A toy model for the relativistic Vlasov-Maxwell system. Kinetic and Related Models, 2022, 15 (3) : 341-354. doi: 10.3934/krm.2021053

[16]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. Time evolution of a Vlasov-Poisson plasma with magnetic confinement. Kinetic and Related Models, 2012, 5 (4) : 729-742. doi: 10.3934/krm.2012.5.729

[17]

Gang Li, Xianwen Zhang. A Vlasov-Poisson plasma of infinite mass with a point charge. Kinetic and Related Models, 2018, 11 (2) : 303-336. doi: 10.3934/krm.2018015

[18]

Yulia O. Belyaeva, Björn Gebhard, Alexander L. Skubachevskii. A general way to confined stationary Vlasov-Poisson plasma configurations. Kinetic and Related Models, 2021, 14 (2) : 257-282. doi: 10.3934/krm.2021004

[19]

Christian Klingenberg, Marlies Pirner, Gabriella Puppo. A consistent kinetic model for a two-component mixture with an application to plasma. Kinetic and Related Models, 2017, 10 (2) : 445-465. doi: 10.3934/krm.2017017

[20]

Charles Nguyen, Stephen Pankavich. A one-dimensional kinetic model of plasma dynamics with a transport field. Evolution Equations and Control Theory, 2014, 3 (4) : 681-698. doi: 10.3934/eect.2014.3.681

2020 Impact Factor: 1.432

Metrics

  • PDF downloads (126)
  • HTML views (116)
  • Cited by (0)

[Back to Top]