\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Uniform lifetime for classical solutions to the Hot, Magnetized, Relativistic Vlasov Maxwell system

  • *Corresponding author: Dayton Preissl

    *Corresponding author: Dayton Preissl 
Dayton Preissl and Slim Ibrahim were supported by NSERC grant (371637-2019)
Abstract Full Text(HTML) Related Papers Cited by
  • This article is devoted to the kinetic description in phase space of magnetically confined plasmas. It addresses the problem of stability near equilibria of the Relativistic Vlasov Maxwell system. We work under the Glassey-Strauss compactly supported momentum assumption on the density function $ f(t,\cdot) $. Magnetically confined plasmas are characterized by the presence of a strong external magnetic field $ x \mapsto \epsilon^{-1} \mathbf{B}_e(x) $, where $ \epsilon $ is a small parameter related to the inverse gyrofrequency of electrons. In comparison, the self consistent internal electromagnetic fields $ (E,B) $ are supposed to be small. In the non-magnetized setting, local $ C^1 $-solutions do exist but do not exclude the possibility of blow up in finite time for large data. Consequently, in the strongly magnetized case, since $ \epsilon^{-1} $ is large, standard results predict that the lifetime $ T_\epsilon $ of solutions may shrink to zero when $ \epsilon $ goes to $ 0 $. In this article, through field straightening, and a time averaging procedure we show a uniform lower bound ($ 0<T<T_\epsilon $) on the lifetime of solutions and uniform Sup-Norm estimates. Furthermore, a bootstrap argument shows $ f $ remains at a distance $ \epsilon $ from the linearized system, while the internal fields can differ by order 1 for well prepared initial data.

    Mathematics Subject Classification: Primary: 35L05, 35Q61, 35Q83.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Acad. Sci. Hungar., 7 (1956), 81-94.  doi: 10.1007/BF02022967.
    [2] M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field: Guiding-center approximation, Multiscale Model. Simul., 6 (2007), 1026-1058.  doi: 10.1137/070689383.
    [3] F. BouchutF. Golse and C. Pallard, Classical solutions and the Glassey-Strauss theorem for the 3D Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 170 (2003), 1-15.  doi: 10.1007/s00205-003-0265-6.
    [4] C. Cheverry, Anomalous transport, J. Differential Equations, 262 (2017), 2987-3033.  doi: 10.1016/j.jde.2016.11.012.
    [5] C. Cheverry, Can one hear whistler waves?, Comm. Math. Phys., 338 (2015), 641–-703. doi: 10.1007/s00220-015-2389-6.
    [6] C. Cheverry and S. Ibrahim, The relativistic Vlasov Maxwell equations for strongly magnetized plasmas, Commun. Math. Sci., 18 (2020), 123-162.  doi: 10.4310/CMS.2020.v18.n1.a6.
    [7] R. J. DiPerna and P.-L. Lions, Global weak solutions of Vlasov-Maxwell systems, Comm. Pure Appl. Math., 42 (1989), 729-757.  doi: 10.1002/cpa.3160420603.
    [8] L. C. Evans, Partial Differential Equations, 2$^nd$ edition, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019.
    [9] I. Gallagher and L. Saint Raymond, Asymptotic results for pressureless magnet–Hydrodynamics, arXiv: math/0312021.
    [10] R. T. Glassey, The Cauchy Problem in Kinetic Theory, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996. doi: 10.1137/1.9781611971477.
    [11] R. T. Glassey and J. W. Schaeffer, Global existence for the relativistic Vlasov-Maxwell system with nearly neutral initial data, Comm. Math. Phys., 119 (1988), 353-384.  doi: 10.1007/BF01218078.
    [12] R. T. Glassey and W. A. Strauss, Absence of shocks in an initially dilute collisionless plasma, Comm. Math. Phys., 113 (1987), 191-208. 
    [13] R. T. Glassey and W. A. Strauss, Singularity formation in a collisionless plasma could occur only at high velocities, Arch. Rational Mech. Anal., 92 (1986), 59-90.  doi: 10.1007/BF00250732.
    [14] F. Golse, Distributions, analyse de Fourier, équations aux dérivées partielles, Cours de l'École Polytechnique, 2012. Available from: http://www.cmls.polytechnique.fr/perso/golse/MAT431-10/POLY431.pdf.
    [15] S. Klainerman, Uniform decay estimates and the Lorentz invariance of the classical wave equation, Commun. Pure Appl. Math., 38 (1985), 321-332.  doi: 10.1002/cpa.3160380305.
    [16] S. Klainerman and G. Staffilani, A new approach to study the Vlasov-Maxwell system, Commun. Pure Appl. Anal., 1 (2002), 103-125.  doi: 10.3934/cpaa.2002.1.103.
    [17] J. Luk and R. M. Strain, Strichartz estimates and moment bounds for the relativistic Vlasov-Maxwell system, Arch. Ration. Mech. Anal., 219 (2016), 445-552.  doi: 10.1007/s00205-015-0899-1.
    [18] D. Preissl, The Hot, Magnetized Relativistic Vlasov Maxwell System, MSc thesis, University of Victoria, 2020. Available from: https://dspace.library.uvic.ca:8443/handle/1828/12510.
    [19] X. Wang, Global solution of the 3D relativistic Vlasov-Maxwell system for the large radial data, preprint, arXiv: 2003.14192.
    [20] X. Wang, Propagation of regularity and long time behavior of the 3D massive relativistic transport equation Ⅱ: Vlasov-Maxwell system, preprint, arXiv: 1804.06566. doi: 10.1007/s00220-021-03987-2.
  • 加载中
SHARE

Article Metrics

HTML views(410) PDF downloads(143) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return