We consider linear stability of steady states of 1$ \frac{1}{2} $ and 3DVlasov-Maxwell systems for collisionless plasmas. The linearized systems canbe written as separable Hamiltonian systems with constraints. By using ageneral theory for separable Hamiltonian systems, we recover the sharp linearstability criteria obtained previously by different approaches. Moreover, weobtain the exponential trichotomy estimates for the linearized Vlasov-Maxwellsystems in both relativistic and nonrelativistic cases.
Citation: |
[1] |
J. Ben-Artzi, Instabilities in kinetic theory and their relationship to the ergodic theorem, Complex Analysis and Dynamical Systems Ⅵ. Part 1, 25–39, Contemp. Math., 653, Israel Math. Conf. Proc., Amer. Math. Soc., Providence, RI, 2015.
doi: 10.1090/conm/653/13176.![]() ![]() ![]() |
[2] |
J. Ben-Artzi, Instability of nonmonotone magnetic equilibria of the relativistic Vlasov-Maxwell system, Nonlinearity, 24 (2011), 3353-3389.
doi: 10.1088/0951-7715/24/12/004.![]() ![]() ![]() |
[3] |
J. Ben-Artzi, Instability of nonsymmetric nonmonotone equilibria of the Vlasov-Maxwell system, J. Math. Phys., 52 (2011), 123703, 21 pp.
doi: 10.1063/1.3670874.![]() ![]() ![]() |
[4] |
J. Ben-Artzi and T. Holding, Instabilities of the relativistic Vlasov-Maxwell system on unbounded domains, SIAM J. Math. Anal., 49 (2017), 4024-4063.
doi: 10.1137/15M1025396.![]() ![]() ![]() |
[5] |
Y. Guo and Z. Lin, Unstable and stable galaxy models, Comm. Math. Phys., 279 (2008), 789-813.
doi: 10.1007/s00220-008-0439-z.![]() ![]() ![]() |
[6] |
Y. Guo and W. A. Strauss, Magnetically created instability in a collisionless plasma, J. Math. Pures. Appl., 79 (2000), 975-1009.
doi: 10.1016/S0021-7824(00)01186-7.![]() ![]() ![]() |
[7] |
Z. Lin, Instability of periodic BGK waves, Math. Res. Lett., 8 (2001), 521-534.
doi: 10.4310/MRL.2001.v8.n4.a11.![]() ![]() ![]() |
[8] |
Z. Lin and W. A. Strauss, Linear stability and instability of relativistic Vlasov-Maxwell systems, Comm. Pure Appl. Math., 60 (2007), 724-787.
doi: 10.1002/cpa.20158.![]() ![]() ![]() |
[9] |
Z. Lin and W. Strauss, Nonlinear stability and instability of relativistic Vlasov-Maxwell systems, Comm. Pure. Appl. Math., 60 (2007), 789-837.
doi: 10.1002/cpa.20161.![]() ![]() ![]() |
[10] |
Z. Lin and W. A. Strauss, A sharp stability criterion for Vlasov-Maxwell systems, Invent. Math., 173 (2008), 497-546.
doi: 10.1007/s00222-008-0122-1.![]() ![]() ![]() |
[11] |
Z. Lin and C. Zeng, Instability, index theorem, and exponential trichotomy for Linear Hamiltonian PDEs, Mem. Amer. Math. Soc., 275 (2022), 1347.
doi: 10.1090/memo/1347.![]() ![]() ![]() |
[12] |
Z. Lin and C. Zeng, Separable Hamiltonian PDEs and Turning point principle for stability of gaseous stars, arXiv: 2005.00973, accepted by Comm. Pure. Appl. Math.
doi: 10.1002/cpa.22027.![]() ![]() |
[13] |
T. T. Nguyen and W. A. Strauss, Linear stability analysis of a hot plasma in a solid torus, Arch. Ration. Mech. Anal., 211 (2014), 619-672.
doi: 10.1007/s00205-013-0680-2.![]() ![]() ![]() |
[14] |
T. T. Nguyen and W. A. Strauss, Stability analysis of collisionless plasmas with specularly reflecting boundary, SIAM J. Math. Anal., 45 (2013), 777-808.
doi: 10.1137/110859695.![]() ![]() ![]() |
[15] |
K. Z. Zhang, Linear stability analysis of the relativistic Vlasov-Maxwell system in an axisymmetric domain, SIAM J. Math. Anal., 51 (2019), 4683-4723.
doi: 10.1137/18M1206825.![]() ![]() ![]() |