
-
Previous Article
Formal derivation of quantum drift-diffusion equations with spin-orbit interaction
- KRM Home
- This Issue
-
Next Article
Global hypocoercivity of kinetic Fokker-Planck-Alignment equations
Uncertainty quantification in hierarchical vehicular flow models
RWTH Aachen University, Institut für Geometrie und Praktische Mathematik, Templergraben 55, 52062 Aachen, Germany |
We consider kinetic vehicular traffic flow models of BGK type [
References:
[1] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[2] |
I. Babuška, F. Nobile and R. Tempone,
A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), 1005-1034.
doi: 10.1137/050645142. |
[3] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama,
Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.
|
[4] |
N. Bellomo and C. Dogbe,
On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.
doi: 10.1137/090746677. |
[5] |
P. L. Bhatnagar, E. P. Gross and M. Krook,
A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
|
[6] |
R. Borsche and A. Klar,
A nonlinear discrete velocity relaxation model for traffic flow, SIAM J. Appl. Math., 78 (2018), 2891-2917.
doi: 10.1137/17M1152681. |
[7] |
R. H. Cameron and W. T. Martin,
The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math., 48 (1947), 385-392.
doi: 10.2307/1969178. |
[8] |
J. Carrillo, L. Pareschi and M. Zanella,
Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys., 25 (2019), 508-531.
doi: 10.4208/cicp.oa-2017-0244. |
[9] |
J. Carrillo and M. Zanella,
Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties, Vietnam J. Math., 47 (2019), 931-954.
doi: 10.1007/s10013-019-00374-2. |
[10] |
Q.-Y. Chen, D. Gottlieb and J. S. Hesthaven,
Uncertainty analysis for the steady-state flows in a dual throat nozzle, J. Comput. Phys., 204 (2005), 378-398.
doi: 10.1016/j.jcp.2004.10.019. |
[11] |
R. M. Colombo,
Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.
doi: 10.1137/S0036139901393184. |
[12] |
E. Cristiani and S. Sahu,
On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016), 395-413.
doi: 10.3934/nhm.2016002. |
[13] |
B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem and O. P. L. Maître,
Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput., 26 (2004), 698-719.
doi: 10.1137/S1064827503427741. |
[14] |
B. Després, G. Poëtte and D. Lucor,
Uncertainty quantification for systems of conservation laws, J. Comput. Phys., 228 (2009), 2443-2467.
doi: 10.1016/j.jcp.2008.12.018. |
[15] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[16] |
S. Fan, M. Herty and B. Seibold,
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239. |
[17] |
D. Gazis, R. Herman and R. Rothery,
Nonlinear follow-the-leader models of traffic flow, Oper. Res., 9 (1961), 545-567.
doi: 10.1287/opre.9.4.545. |
[18] |
S. Gerster and M. Herty,
Entropies and symmetrization of hyperbolic stochastic Galerkin formulations, Commun. Comput. Phys., 27 (2020), 639-671.
doi: 10.4208/cicp.OA-2019-0047. |
[19] |
S. Gerster, M. Herty and E. Iacomini,
Stability analysis of a hyperbolic stochastic galerkin formulation for the aw-rascle-zhang model with relaxation, Math. Biosci. Eng., 18 (2021), 4372-4389.
doi: 10.3934/mbe.2021220. |
[20] |
S. Gerster, M. Herty and A. Sikstel,
Hyperbolic stochastic Galerkin formulation for the $p$-system, J. Comput. Phys., 395 (2019), 186-204.
doi: 10.1016/j.jcp.2019.05.049. |
[21] |
D. Gottlieb and D. Xiu,
Galerkin method for wave equations with uncertain coefficients, Commun. Comput. Phys., 3 (2008), 505-518.
|
[22] |
M. Herty and R. Illner,
Analytical and numerical investigations of refined macroscopic traffic flow models, Kinet. Relat. Models, 3 (2010), 311-333.
doi: 10.3934/krm.2010.3.311. |
[23] |
M. Herty and L. Pareschi,
Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179.
doi: 10.3934/krm.2010.3.165. |
[24] |
M. Herty, G. Puppo, S. Roncoroni and G. Visconti,
The BGK approximation of kinetic models for traffic, Kinet. Relat. Models, 13 (2020), 279-307.
doi: 10.3934/krm.2020010. |
[25] |
H. Holden and N. H. Risebro,
The continuum limit of Follow-the-Leader models—a short proof, Discrete Contin. Dyn. Syst., 38 (2018), 715-722.
doi: 10.3934/dcds.2018031. |
[26] |
J. Hu and S. Jin,
A stochastic Galerkin method for the Boltzmann equation with uncertainty, J. Comput. Phys., 315 (2016), 150-168.
doi: 10.1016/j.jcp.2016.03.047. |
[27] |
S. Jin and Y. Zhu,
Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales, SIAM J. Math. Anal., 50 (2018), 1790-1816.
doi: 10.1137/17M1123845. |
[28] |
A. Klar and R. Wegener,
A kinetic model for vehicular traffic derived from a stochastic microscopic model, Transport. Theor. Stat., 25 (1996), 785-798.
|
[29] |
A. Klar and R. Wegener,
Enskog-like kinetic models for vehicular traffic, J. Stat. Phys., 87 (1997), 91-114.
doi: 10.1007/BF02181481. |
[30] |
J. Kusch, G. Alldredge and M. Frank,
Maximum-principle-satisfying second-order intrusive polynomial moment scheme, SMAI J. Comput. Math., 5 (2019), 23-51.
doi: 10.5802/smai-jcm.42. |
[31] |
O. P. Le Maître and O. M. Knio, Spectral Methods for Uncertainty Quantification, Springer, New York, 2010.
doi: 10.1007/978-90-481-3520-2. |
[32] |
P. L'Ecuyer and C. Lemieux,
Recent advances in randomized quasi-monte carlo methods, Internat. Ser. Oper. Res. Management Sci., 46 (2002), 419-474.
doi: 10.1007/0-306-48102-2_20. |
[33] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[34] |
O. P. L. Maître and O. M. Knio, Spectral Methods for Uncertainty Quantification, Springer Netherlands, 1 ed., 2010.
doi: 10.1007/978-90-481-3520-2. |
[35] |
P. Pettersson, G. Iaccarino and J. Nordström,
A stochastic Galerkin method for the Euler equations with Roe variable transformation, J. Comput. Phys., 257 (2014), 481-500.
doi: 10.1016/j.jcp.2013.10.011. |
[36] |
P. Pettersson, G. Iaccarino and J. Nordström, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations, Numerical techniques for fluid dynamics problems in the presence of uncertainties. Mathematical Engineering. Springer, Cham, 2015.
doi: 10.1007/978-3-319-10714-1. |
[37] |
R. Pulch and D. Xiu,
Generalised polynomial chaos for a class of linear conservation laws, J. Sci. Comput., 51 (2012), 293-312.
doi: 10.1007/s10915-011-9511-5. |
[38] |
G. Puppo, M. Semplice, A. Tosin and G. Visconti,
Kinetic models for traffic flow resulting in a reduced space of microscopic velocities, Kinet. Relat. Mod., 10 (2017), 823-854.
doi: 10.3934/krm.2017033. |
[39] |
B. Seibold, M. R. Flynn, A. R. Kasimov and R. R. Rosales,
Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Netw. Heterog. Media, 8 (2013), 745-772.
doi: 10.3934/nhm.2013.8.745. |
[40] |
R. Shu, J. Hu and S. Jin,
A stochastic Galerkin method for the Boltzmann equation with multi-dimensional random inputs using sparse wavelet bases, Numer. Math. Theory Methods Appl., 10 (2017), 465-488.
doi: 10.4208/nmtma.2017.s12. |
[41] |
T. J. Sullivan, Introduction to Uncertainty Quantification, Texts in Applied Mathematics, 63. Springer, Cham, 2015.
doi: 10.1007/978-3-319-23395-6. |
[42] |
K. Taimre, Botev, Handbook of Monte Carlo Methods, John Wiley and Sons, 2011. |
[43] |
A. Tosin and M. Zanella,
Boltzmann-type models with uncertain binary interactions, Commun. Math. Sci., 16 (2018), 963-985.
doi: 10.4310/CMS.2018.v16.n4.a3. |
[44] |
A. Tosin and M. Zanella,
Uncertainty damping in kinetic traffic models by driver-assist controls, Math. Control Relat. Fields, 11 (2021), 681-713.
doi: 10.3934/mcrf.2021018. |
[45] |
N. Wiener,
The homogeneous chaos, Amer. J. Math., 60 (1938), 897-936.
doi: 10.2307/2371268. |
[46] |
D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, N.J, 2010.
![]() ![]() |
[47] |
D. Xiu and G. E. Karniadakis,
The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), 619-644.
doi: 10.1137/S1064827501387826. |
[48] |
M. Zanella,
Structure preserving stochastic Galerkin methods for Fokker-Planck equations with background interactions, Math. Comput. Simulation, 168 (2020), 28-47.
doi: 10.1016/j.matcom.2019.07.012. |
[49] |
H. M. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transport. Res. B-Meth., 36 (2002), 275-290.
|
[50] |
Y. Zhu and S. Jin,
The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-dimensional asymptotic preserving method, Multiscale Model. Simul., 15 (2017), 1502-1529.
doi: 10.1137/16M1090028. |
show all references
References:
[1] |
A. Aw and M. Rascle,
Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916-938.
doi: 10.1137/S0036139997332099. |
[2] |
I. Babuška, F. Nobile and R. Tempone,
A stochastic collocation method for elliptic partial differential equations with random input data, SIAM J. Numer. Anal., 45 (2007), 1005-1034.
doi: 10.1137/050645142. |
[3] |
M. Bando, K. Hasebe, A. Nakayama, A. Shibata and Y. Sugiyama,
Dynamical model of traffic congestion and numerical simulation, Phys. Rev. E, 51 (1995), 1035-1042.
|
[4] |
N. Bellomo and C. Dogbe,
On the modeling of traffic and crowds: A survey of models, speculations, and perspectives, SIAM Rev., 53 (2011), 409-463.
doi: 10.1137/090746677. |
[5] |
P. L. Bhatnagar, E. P. Gross and M. Krook,
A model for collision processes in gases. i. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), 511-525.
|
[6] |
R. Borsche and A. Klar,
A nonlinear discrete velocity relaxation model for traffic flow, SIAM J. Appl. Math., 78 (2018), 2891-2917.
doi: 10.1137/17M1152681. |
[7] |
R. H. Cameron and W. T. Martin,
The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals, Ann. of Math., 48 (1947), 385-392.
doi: 10.2307/1969178. |
[8] |
J. Carrillo, L. Pareschi and M. Zanella,
Particle based gPC methods for mean-field models of swarming with uncertainty, Commun. Comput. Phys., 25 (2019), 508-531.
doi: 10.4208/cicp.oa-2017-0244. |
[9] |
J. Carrillo and M. Zanella,
Monte Carlo gPC methods for diffusive kinetic flocking models with uncertainties, Vietnam J. Math., 47 (2019), 931-954.
doi: 10.1007/s10013-019-00374-2. |
[10] |
Q.-Y. Chen, D. Gottlieb and J. S. Hesthaven,
Uncertainty analysis for the steady-state flows in a dual throat nozzle, J. Comput. Phys., 204 (2005), 378-398.
doi: 10.1016/j.jcp.2004.10.019. |
[11] |
R. M. Colombo,
Hyperbolic phase transitions in traffic flow, SIAM J. Appl. Math., 63 (2002), 708-721.
doi: 10.1137/S0036139901393184. |
[12] |
E. Cristiani and S. Sahu,
On the micro-to-macro limit for first-order traffic flow models on networks, Netw. Heterog. Media, 11 (2016), 395-413.
doi: 10.3934/nhm.2016002. |
[13] |
B. J. Debusschere, H. N. Najm, P. P. Pébay, O. M. Knio, R. G. Ghanem and O. P. L. Maître,
Numerical challenges in the use of polynomial chaos representations for stochastic processes, SIAM J. Sci. Comput., 26 (2004), 698-719.
doi: 10.1137/S1064827503427741. |
[14] |
B. Després, G. Poëtte and D. Lucor,
Uncertainty quantification for systems of conservation laws, J. Comput. Phys., 228 (2009), 2443-2467.
doi: 10.1016/j.jcp.2008.12.018. |
[15] |
M. Di Francesco and M. D. Rosini,
Rigorous derivation of nonlinear scalar conservation laws from follow-the-leader type models via many particle limit, Arch. Ration. Mech. Anal., 217 (2015), 831-871.
doi: 10.1007/s00205-015-0843-4. |
[16] |
S. Fan, M. Herty and B. Seibold,
Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model, Netw. Heterog. Media, 9 (2014), 239-268.
doi: 10.3934/nhm.2014.9.239. |
[17] |
D. Gazis, R. Herman and R. Rothery,
Nonlinear follow-the-leader models of traffic flow, Oper. Res., 9 (1961), 545-567.
doi: 10.1287/opre.9.4.545. |
[18] |
S. Gerster and M. Herty,
Entropies and symmetrization of hyperbolic stochastic Galerkin formulations, Commun. Comput. Phys., 27 (2020), 639-671.
doi: 10.4208/cicp.OA-2019-0047. |
[19] |
S. Gerster, M. Herty and E. Iacomini,
Stability analysis of a hyperbolic stochastic galerkin formulation for the aw-rascle-zhang model with relaxation, Math. Biosci. Eng., 18 (2021), 4372-4389.
doi: 10.3934/mbe.2021220. |
[20] |
S. Gerster, M. Herty and A. Sikstel,
Hyperbolic stochastic Galerkin formulation for the $p$-system, J. Comput. Phys., 395 (2019), 186-204.
doi: 10.1016/j.jcp.2019.05.049. |
[21] |
D. Gottlieb and D. Xiu,
Galerkin method for wave equations with uncertain coefficients, Commun. Comput. Phys., 3 (2008), 505-518.
|
[22] |
M. Herty and R. Illner,
Analytical and numerical investigations of refined macroscopic traffic flow models, Kinet. Relat. Models, 3 (2010), 311-333.
doi: 10.3934/krm.2010.3.311. |
[23] |
M. Herty and L. Pareschi,
Fokker-Planck asymptotics for traffic flow models, Kinet. Relat. Models, 3 (2010), 165-179.
doi: 10.3934/krm.2010.3.165. |
[24] |
M. Herty, G. Puppo, S. Roncoroni and G. Visconti,
The BGK approximation of kinetic models for traffic, Kinet. Relat. Models, 13 (2020), 279-307.
doi: 10.3934/krm.2020010. |
[25] |
H. Holden and N. H. Risebro,
The continuum limit of Follow-the-Leader models—a short proof, Discrete Contin. Dyn. Syst., 38 (2018), 715-722.
doi: 10.3934/dcds.2018031. |
[26] |
J. Hu and S. Jin,
A stochastic Galerkin method for the Boltzmann equation with uncertainty, J. Comput. Phys., 315 (2016), 150-168.
doi: 10.1016/j.jcp.2016.03.047. |
[27] |
S. Jin and Y. Zhu,
Hypocoercivity and uniform regularity for the Vlasov-Poisson-Fokker-Planck system with uncertainty and multiple scales, SIAM J. Math. Anal., 50 (2018), 1790-1816.
doi: 10.1137/17M1123845. |
[28] |
A. Klar and R. Wegener,
A kinetic model for vehicular traffic derived from a stochastic microscopic model, Transport. Theor. Stat., 25 (1996), 785-798.
|
[29] |
A. Klar and R. Wegener,
Enskog-like kinetic models for vehicular traffic, J. Stat. Phys., 87 (1997), 91-114.
doi: 10.1007/BF02181481. |
[30] |
J. Kusch, G. Alldredge and M. Frank,
Maximum-principle-satisfying second-order intrusive polynomial moment scheme, SMAI J. Comput. Math., 5 (2019), 23-51.
doi: 10.5802/smai-jcm.42. |
[31] |
O. P. Le Maître and O. M. Knio, Spectral Methods for Uncertainty Quantification, Springer, New York, 2010.
doi: 10.1007/978-90-481-3520-2. |
[32] |
P. L'Ecuyer and C. Lemieux,
Recent advances in randomized quasi-monte carlo methods, Internat. Ser. Oper. Res. Management Sci., 46 (2002), 419-474.
doi: 10.1007/0-306-48102-2_20. |
[33] |
M. J. Lighthill and G. B. Whitham,
On kinematic waves. II. A theory of traffic flow on long crowded roads, Proc. Roy. Soc. London. Ser. A., 229 (1955), 317-345.
doi: 10.1098/rspa.1955.0089. |
[34] |
O. P. L. Maître and O. M. Knio, Spectral Methods for Uncertainty Quantification, Springer Netherlands, 1 ed., 2010.
doi: 10.1007/978-90-481-3520-2. |
[35] |
P. Pettersson, G. Iaccarino and J. Nordström,
A stochastic Galerkin method for the Euler equations with Roe variable transformation, J. Comput. Phys., 257 (2014), 481-500.
doi: 10.1016/j.jcp.2013.10.011. |
[36] |
P. Pettersson, G. Iaccarino and J. Nordström, Polynomial Chaos Methods for Hyperbolic Partial Differential Equations, Numerical techniques for fluid dynamics problems in the presence of uncertainties. Mathematical Engineering. Springer, Cham, 2015.
doi: 10.1007/978-3-319-10714-1. |
[37] |
R. Pulch and D. Xiu,
Generalised polynomial chaos for a class of linear conservation laws, J. Sci. Comput., 51 (2012), 293-312.
doi: 10.1007/s10915-011-9511-5. |
[38] |
G. Puppo, M. Semplice, A. Tosin and G. Visconti,
Kinetic models for traffic flow resulting in a reduced space of microscopic velocities, Kinet. Relat. Mod., 10 (2017), 823-854.
doi: 10.3934/krm.2017033. |
[39] |
B. Seibold, M. R. Flynn, A. R. Kasimov and R. R. Rosales,
Constructing set-valued fundamental diagrams from jamiton solutions in second order traffic models, Netw. Heterog. Media, 8 (2013), 745-772.
doi: 10.3934/nhm.2013.8.745. |
[40] |
R. Shu, J. Hu and S. Jin,
A stochastic Galerkin method for the Boltzmann equation with multi-dimensional random inputs using sparse wavelet bases, Numer. Math. Theory Methods Appl., 10 (2017), 465-488.
doi: 10.4208/nmtma.2017.s12. |
[41] |
T. J. Sullivan, Introduction to Uncertainty Quantification, Texts in Applied Mathematics, 63. Springer, Cham, 2015.
doi: 10.1007/978-3-319-23395-6. |
[42] |
K. Taimre, Botev, Handbook of Monte Carlo Methods, John Wiley and Sons, 2011. |
[43] |
A. Tosin and M. Zanella,
Boltzmann-type models with uncertain binary interactions, Commun. Math. Sci., 16 (2018), 963-985.
doi: 10.4310/CMS.2018.v16.n4.a3. |
[44] |
A. Tosin and M. Zanella,
Uncertainty damping in kinetic traffic models by driver-assist controls, Math. Control Relat. Fields, 11 (2021), 681-713.
doi: 10.3934/mcrf.2021018. |
[45] |
N. Wiener,
The homogeneous chaos, Amer. J. Math., 60 (1938), 897-936.
doi: 10.2307/2371268. |
[46] |
D. Xiu, Numerical Methods for Stochastic Computations: A Spectral Method Approach, Princeton University Press, Princeton, N.J, 2010.
![]() ![]() |
[47] |
D. Xiu and G. E. Karniadakis,
The Wiener-Askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24 (2002), 619-644.
doi: 10.1137/S1064827501387826. |
[48] |
M. Zanella,
Structure preserving stochastic Galerkin methods for Fokker-Planck equations with background interactions, Math. Comput. Simulation, 168 (2020), 28-47.
doi: 10.1016/j.matcom.2019.07.012. |
[49] |
H. M. Zhang,
A non-equilibrium traffic model devoid of gas-like behavior, Transport. Res. B-Meth., 36 (2002), 275-290.
|
[50] |
Y. Zhu and S. Jin,
The Vlasov-Poisson-Fokker-Planck system with uncertainty and a one-dimensional asymptotic preserving method, Multiscale Model. Simul., 15 (2017), 1502-1529.
doi: 10.1137/16M1090028. |








[1] |
Stefano Villa, Paola Goatin, Christophe Chalons. Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3921-3952. doi: 10.3934/dcdsb.2017202 |
[2] |
Marco Di Francesco, Simone Fagioli, Massimiliano D. Rosini. Many particle approximation of the Aw-Rascle-Zhang second order model for vehicular traffic. Mathematical Biosciences & Engineering, 2017, 14 (1) : 127-141. doi: 10.3934/mbe.2017009 |
[3] |
Shimao Fan, Michael Herty, Benjamin Seibold. Comparative model accuracy of a data-fitted generalized Aw-Rascle-Zhang model. Networks and Heterogeneous Media, 2014, 9 (2) : 239-268. doi: 10.3934/nhm.2014.9.239 |
[4] |
Boris P. Andreianov, Carlotta Donadello, Ulrich Razafison, Julien Y. Rolland, Massimiliano D. Rosini. Solutions of the Aw-Rascle-Zhang system with point constraints. Networks and Heterogeneous Media, 2016, 11 (1) : 29-47. doi: 10.3934/nhm.2016.11.29 |
[5] |
Marte Godvik, Harald Hanche-Olsen. Car-following and the macroscopic Aw-Rascle traffic flow model. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 279-303. doi: 10.3934/dcdsb.2010.13.279 |
[6] |
Michael Herty, Gabriella Puppo, Sebastiano Roncoroni, Giuseppe Visconti. The BGK approximation of kinetic models for traffic. Kinetic and Related Models, 2020, 13 (2) : 279-307. doi: 10.3934/krm.2020010 |
[7] |
Luisa Fermo, Andrea Tosin. Fundamental diagrams for kinetic equations of traffic flow. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 449-462. doi: 10.3934/dcdss.2014.7.449 |
[8] |
Gabriella Puppo, Matteo Semplice, Andrea Tosin, Giuseppe Visconti. Kinetic models for traffic flow resulting in a reduced space of microscopic velocities. Kinetic and Related Models, 2017, 10 (3) : 823-854. doi: 10.3934/krm.2017033 |
[9] |
Marzia Bisi, Giampiero Spiga. On a kinetic BGK model for slow chemical reactions. Kinetic and Related Models, 2011, 4 (1) : 153-167. doi: 10.3934/krm.2011.4.153 |
[10] |
Young-Pil Choi, Seok-Bae Yun. A BGK kinetic model with local velocity alignment forces. Networks and Heterogeneous Media, 2020, 15 (3) : 389-404. doi: 10.3934/nhm.2020024 |
[11] |
Carlota M. Cuesta, Sabine Hittmeir, Christian Schmeiser. Weak shocks of a BGK kinetic model for isentropic gas dynamics. Kinetic and Related Models, 2010, 3 (2) : 255-279. doi: 10.3934/krm.2010.3.255 |
[12] |
Alberto Bressan, Khai T. Nguyen. Conservation law models for traffic flow on a network of roads. Networks and Heterogeneous Media, 2015, 10 (2) : 255-293. doi: 10.3934/nhm.2015.10.255 |
[13] |
Johanna Ridder, Wen Shen. Traveling waves for nonlocal models of traffic flow. Discrete and Continuous Dynamical Systems, 2019, 39 (7) : 4001-4040. doi: 10.3934/dcds.2019161 |
[14] |
Tong Li. Qualitative analysis of some PDE models of traffic flow. Networks and Heterogeneous Media, 2013, 8 (3) : 773-781. doi: 10.3934/nhm.2013.8.773 |
[15] |
Paola Goatin. Traffic flow models with phase transitions on road networks. Networks and Heterogeneous Media, 2009, 4 (2) : 287-301. doi: 10.3934/nhm.2009.4.287 |
[16] |
Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165 |
[17] |
Helge Holden, Nils Henrik Risebro. Follow-the-Leader models can be viewed as a numerical approximation to the Lighthill-Whitham-Richards model for traffic flow. Networks and Heterogeneous Media, 2018, 13 (3) : 409-421. doi: 10.3934/nhm.2018018 |
[18] |
Andrea Tosin, Mattia Zanella. Uncertainty damping in kinetic traffic models by driver-assist controls. Mathematical Control and Related Fields, 2021, 11 (3) : 681-713. doi: 10.3934/mcrf.2021018 |
[19] |
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1 (1) : 57-84. doi: 10.3934/nhm.2006.1.57 |
[20] |
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 427-448. doi: 10.3934/dcdsb.2006.6.427 |
2021 Impact Factor: 1.398
Tools
Metrics
Other articles
by authors
[Back to Top]