doi: 10.3934/krm.2022009
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium

Vienna University of Technology, Institute of Analysis and Scientific Computing, Wiedner Hauptstr. 8-10, A-1040 Wien, Austria

Received  June 2021 Revised  September 2021 Early access March 2022

This paper is concerned with finding Fokker-Planck equations in $ \mathbb{R}^d $ with the fastest exponential decay towards a given equilibrium. For a prescribed, anisotropic Gaussian we determine a non-symmetric Fokker-Planck equation with linear drift that shows the highest exponential decay rate for the convergence of its solutions towards equilibrium. At the same time it has to allow for a decay estimate with a multiplicative constant arbitrarily close to its infimum.

Such an "optimal" Fokker-Planck equation is constructed explicitly with a diffusion matrix of rank one, hence being hypocoercive. In an $ L^2 $–analysis, we find that the maximum decay rate equals the maximum eigenvalue of the inverse covariance matrix, and that the infimum of the attainable multiplicative constant is 1, corresponding to the high-rotational limit in the Fokker-Planck drift. This analysis is complemented with numerical illustrations in 2D, and it includes a case study for time-dependent coefficient matrices.

Citation: Anton Arnold, Beatrice Signorello. Optimal non-symmetric Fokker-Planck equation for the convergence to a given equilibrium. Kinetic and Related Models, doi: 10.3934/krm.2022009
References:
[1]

F. AchleitnerA. Arnold and E. A. Carlen, On multi-dimensional hypocoercive BGK models,, Kinet. Relat. Models, 11 (2018), 953-1009.  doi: 10.3934/krm.2018038.

[2]

F. Achleitner, A. Arnold and B. Signorello, On optimal decay estimates for ODEs and PDEs with modal decomposition, Stochastic Dynamics out of Equilibrium, Springer Proceedings in Mathematics and Statistics, 282 (2019), 241–264. doi: 10.1007/978-3-030-15096-9_6.

[3]

A. ArnoldP. A. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. PDE, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.

[4]

A. Arnold, C. Schmeiser and B. Signorello, Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift, Comm. Math. Sc. (2022). Available from: https://arXiv.org/abs/2003.01405.

[5]

A. Arnold and J. Erb, Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift, preprint, https://arXiv.org/abs/1409.5425.

[6]

P. Diaconis, The Markov chain Monte Carlo revolution, Bull. Amer. Math. Soc., 46 (2009), 179-205.  doi: 10.1090/S0273-0979-08-01238-X.

[7]

H. Dietert and J. Evans, Finding the jump rate for fastest decay in the Goldstein-Taylor model, preprint, https://arXiv.org/abs/2103.10064.

[8]

A. Guillin and P. Monmarché, Optimal linear drift for the speed of convergence of an hypoelliptic diffusion, Electron. Commun. Probab., 21 (2016), Paper No. 74, 14 pp. doi: 10.1214/16-ECP25.

[9]

L. Miclo and P. Monmarché, Étude spectrale minutieuse de processus moins indécis que les autres, In Séminaire de Probabilités XLV, 2078 (2013), 459–481. English summary available from: https://www.ljll.math.upmc.fr/ monmarche. doi: 10.1007/978-3-319-00321-4_18.

[10]

R. A. Horn and C. R. Johnson, Matrix Analysis, 2$^{nd}$ edition, Cambridge University Press 2013.

[11]

T. LelièvreF. Nier and G. A. Pavliotis, Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion, J. Stat. Phys., 152 (2013), 237-274.  doi: 10.1007/s10955-013-0769-x.

[12]

J. Snyders and M. Zakai, On nonnegative solutions of the equation $AD+DA' = -C$, SIAM J. Appl. Math., 18 (1970), 704-714.  doi: 10.1137/0118063.

[13]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009). doi: 10.1090/S0065-9266-09-00567-5.

show all references

References:
[1]

F. AchleitnerA. Arnold and E. A. Carlen, On multi-dimensional hypocoercive BGK models,, Kinet. Relat. Models, 11 (2018), 953-1009.  doi: 10.3934/krm.2018038.

[2]

F. Achleitner, A. Arnold and B. Signorello, On optimal decay estimates for ODEs and PDEs with modal decomposition, Stochastic Dynamics out of Equilibrium, Springer Proceedings in Mathematics and Statistics, 282 (2019), 241–264. doi: 10.1007/978-3-030-15096-9_6.

[3]

A. ArnoldP. A. MarkowichG. Toscani and A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. PDE, 26 (2001), 43-100.  doi: 10.1081/PDE-100002246.

[4]

A. Arnold, C. Schmeiser and B. Signorello, Propagator norm and sharp decay estimates for Fokker-Planck equations with linear drift, Comm. Math. Sc. (2022). Available from: https://arXiv.org/abs/2003.01405.

[5]

A. Arnold and J. Erb, Sharp entropy decay for hypocoercive and non-symmetric Fokker-Planck equations with linear drift, preprint, https://arXiv.org/abs/1409.5425.

[6]

P. Diaconis, The Markov chain Monte Carlo revolution, Bull. Amer. Math. Soc., 46 (2009), 179-205.  doi: 10.1090/S0273-0979-08-01238-X.

[7]

H. Dietert and J. Evans, Finding the jump rate for fastest decay in the Goldstein-Taylor model, preprint, https://arXiv.org/abs/2103.10064.

[8]

A. Guillin and P. Monmarché, Optimal linear drift for the speed of convergence of an hypoelliptic diffusion, Electron. Commun. Probab., 21 (2016), Paper No. 74, 14 pp. doi: 10.1214/16-ECP25.

[9]

L. Miclo and P. Monmarché, Étude spectrale minutieuse de processus moins indécis que les autres, In Séminaire de Probabilités XLV, 2078 (2013), 459–481. English summary available from: https://www.ljll.math.upmc.fr/ monmarche. doi: 10.1007/978-3-319-00321-4_18.

[10]

R. A. Horn and C. R. Johnson, Matrix Analysis, 2$^{nd}$ edition, Cambridge University Press 2013.

[11]

T. LelièvreF. Nier and G. A. Pavliotis, Optimal non-reversible linear drift for the convergence to equilibrium of a diffusion, J. Stat. Phys., 152 (2013), 237-274.  doi: 10.1007/s10955-013-0769-x.

[12]

J. Snyders and M. Zakai, On nonnegative solutions of the equation $AD+DA' = -C$, SIAM J. Appl. Math., 18 (1970), 704-714.  doi: 10.1137/0118063.

[13]

C. Villani, Hypocoercivity, Mem. Amer. Math. Soc. 202 (2009). doi: 10.1090/S0065-9266-09-00567-5.

Figure 1.  The solid curves show the FP- and ODE-propagator norms as functions of $ t $ for 3 values of the multiplicative parameter: $ c = 3,\,2,\,1.5 $ (top to bottom). The dashed curves give the corresponding (sharp) exponential bound of the form $ c e^{-\lambda_{opt}t} $ for the 3 cases. The dashed black curve shows the exponential bound in the high-rotational limit, i.e. for $ c\searrow1 $. Colors only online
Figure 2.  Left: For $ c = \sqrt2 $, the solid blue and red curves show the FP- and ODE-propagator norms as functions of $ t $ for the hypocoercive FP-equations constructed, respectively, in Theorem 3.1(a) here and Theorem 2.2 in [8]. The dashed blue curve gives the corresponding exponential bound $ \sqrt2\, e^{-t} $; it is sharp for Theorem 3.1(a). The solid green and black curves show the FP- and ODE-propagator norms for the symmetric FP-equations in (2.9) and (4.8), respectively

Right: a zoom of the plot, close to $ t=0 $. Colors only online

Figure 3.  Left: For $ c = \sqrt{4/3} $, the FP- and ODE-propagator norms are given for hypocoercive FP-equations with piecewise constant coefficients, using 5 different values on $ 0\le t\le0.1 $: The solid red curve corresponds to the optimal, constant matrices from Theorem 3.1(a) as reference case, and the dashed red curve is the corresponding decay estimate (3.1). The initially symmetric FP-equations from (4.8) and (2.9) are given by the black and green solid curves, respectively. Hypocoercive FP-equations with slower and faster rotational drift are represented, respectively, by the blue and magenta solid curves

Right: a zoom of the plot, close to $ t=0 $. Colors only online

Figure 4.  For $ c = \sqrt{4/3} $, the FP- and ODE-propagator norms are given for hypocoercive (h.c.) FP-equations with piecewise constant coefficients, using 3 different values on $ 0\le t\le t_0 $: The solid red curve corresponds to the optimal, constant matrices from Theorem 3.1(a) as reference case. Hypocoercive FP-equations with the faster rotational drift matrices (FP5), (FP6) are represented by the magenta and blue solid curves, respectively. The dashed curves are the corresponding decay estimate (3.1). The discontinuity points $ t_0 $ of the coefficient matrices are marked with black dots
[1]

Ioannis Markou. Hydrodynamic limit for a Fokker-Planck equation with coefficients in Sobolev spaces. Networks and Heterogeneous Media, 2017, 12 (4) : 683-705. doi: 10.3934/nhm.2017028

[2]

Sylvain De Moor, Luis Miguel Rodrigues, Julien Vovelle. Invariant measures for a stochastic Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (2) : 357-395. doi: 10.3934/krm.2018017

[3]

Marco Torregrossa, Giuseppe Toscani. On a Fokker-Planck equation for wealth distribution. Kinetic and Related Models, 2018, 11 (2) : 337-355. doi: 10.3934/krm.2018016

[4]

Michael Herty, Christian Jörres, Albert N. Sandjo. Optimization of a model Fokker-Planck equation. Kinetic and Related Models, 2012, 5 (3) : 485-503. doi: 10.3934/krm.2012.5.485

[5]

José Antonio Alcántara, Simone Calogero. On a relativistic Fokker-Planck equation in kinetic theory. Kinetic and Related Models, 2011, 4 (2) : 401-426. doi: 10.3934/krm.2011.4.401

[6]

Joseph G. Conlon, André Schlichting. A non-local problem for the Fokker-Planck equation related to the Becker-Döring model. Discrete and Continuous Dynamical Systems, 2019, 39 (4) : 1821-1889. doi: 10.3934/dcds.2019079

[7]

Simon Plazotta. A BDF2-approach for the non-linear Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2893-2913. doi: 10.3934/dcds.2019120

[8]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics and Games, 2021, 8 (4) : 381-402. doi: 10.3934/jdg.2021013

[9]

Helge Dietert, Josephine Evans, Thomas Holding. Contraction in the Wasserstein metric for the kinetic Fokker-Planck equation on the torus. Kinetic and Related Models, 2018, 11 (6) : 1427-1441. doi: 10.3934/krm.2018056

[10]

Andreas Denner, Oliver Junge, Daniel Matthes. Computing coherent sets using the Fokker-Planck equation. Journal of Computational Dynamics, 2016, 3 (2) : 163-177. doi: 10.3934/jcd.2016008

[11]

Manh Hong Duong, Yulong Lu. An operator splitting scheme for the fractional kinetic Fokker-Planck equation. Discrete and Continuous Dynamical Systems, 2019, 39 (10) : 5707-5727. doi: 10.3934/dcds.2019250

[12]

Giuseppe Toscani. A Rosenau-type approach to the approximation of the linear Fokker-Planck equation. Kinetic and Related Models, 2018, 11 (4) : 697-714. doi: 10.3934/krm.2018028

[13]

Linjie Xiong, Tao Wang, Lusheng Wang. Global existence and decay of solutions to the Fokker-Planck-Boltzmann equation. Kinetic and Related Models, 2014, 7 (1) : 169-194. doi: 10.3934/krm.2014.7.169

[14]

Shui-Nee Chow, Wuchen Li, Haomin Zhou. Entropy dissipation of Fokker-Planck equations on graphs. Discrete and Continuous Dynamical Systems, 2018, 38 (10) : 4929-4950. doi: 10.3934/dcds.2018215

[15]

Martin Burger, Ina Humpert, Jan-Frederik Pietschmann. On Fokker-Planck equations with In- and Outflow of Mass. Kinetic and Related Models, 2020, 13 (2) : 249-277. doi: 10.3934/krm.2020009

[16]

Michael Herty, Lorenzo Pareschi. Fokker-Planck asymptotics for traffic flow models. Kinetic and Related Models, 2010, 3 (1) : 165-179. doi: 10.3934/krm.2010.3.165

[17]

Roman Shvydkoy. Global hypocoercivity of kinetic Fokker-Planck-Alignment equations. Kinetic and Related Models, 2022, 15 (2) : 213-237. doi: 10.3934/krm.2022005

[18]

Ludovic Dan Lemle. $L^1(R^d,dx)$-uniqueness of weak solutions for the Fokker-Planck equation associated with a class of Dirichlet operators. Electronic Research Announcements, 2008, 15: 65-70. doi: 10.3934/era.2008.15.65

[19]

Patrick Cattiaux, Elissar Nasreddine, Marjolaine Puel. Diffusion limit for kinetic Fokker-Planck equation with heavy tails equilibria: The critical case. Kinetic and Related Models, 2019, 12 (4) : 727-748. doi: 10.3934/krm.2019028

[20]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (157)
  • HTML views (99)
  • Cited by (0)

Other articles
by authors

[Back to Top]