October  2022, 15(5): 893-894. doi: 10.3934/krm.2022013

Erratum to: On the entropic property of the ellipsoidal statistical model with the Prandtl number below 2/3

1. 

Department of Aeronautics and Astronautics & Advanced Engineering Research Center, Kyoto University, Kyoto 615-8540, Japan

2. 

Department of Aeronautics and Astronautics, Kyoto University, Kyoto 615-8540, Japan

*Corresponding author: Shigeru Takata

Received  January 2022 Published  October 2022 Early access  April 2022

Citation: Shigeru Takata, Masanari Hattori, Takumu Miyauchi. Erratum to: On the entropic property of the ellipsoidal statistical model with the Prandtl number below 2/3. Kinetic and Related Models, 2022, 15 (5) : 893-894. doi: 10.3934/krm.2022013
Figure 4.  The function $ \epsilon_P $ and the dimensionless density $ \hat{\rho} $ in the range $ 0<\hat{U}<5 $. (a) $ \epsilon_P $, (b) $ \hat{\rho} $. In (a), the values of $ \mathcal{S}(\mathrm{Pr}) $ for $ (3/2)\mathrm{Pr} = 0.76, 0.8, 0.84, \dots, 0.96 $ are also indicated by dash-dotted lines for reference
[1]

Shigeru Takata, Masanari Hattori, Takumu Miyauchi. On the entropic property of the Ellipsoidal Statistical model with the prandtl number below 2/3. Kinetic and Related Models, 2020, 13 (6) : 1163-1174. doi: 10.3934/krm.2020041

[2]

Lei Jing, Jiawei Sun. Global existence and long time behavior of the Ellipsoidal-Statistical-Fokker-Planck model for diatomic gases. Kinetic and Related Models, 2020, 13 (2) : 373-400. doi: 10.3934/krm.2020013

[3]

Seok-Bae Yun. Entropy production for ellipsoidal BGK model of the Boltzmann equation. Kinetic and Related Models, 2016, 9 (3) : 605-619. doi: 10.3934/krm.2016009

[4]

Anne Bronzi, Ricardo Rosa. On the convergence of statistical solutions of the 3D Navier-Stokes-$\alpha$ model as $\alpha$ vanishes. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 19-49. doi: 10.3934/dcds.2014.34.19

[5]

Giuseppe Buttazzo, Luigi De Pascale, Ilaria Fragalà. Erratum. Discrete and Continuous Dynamical Systems, 2007, 18 (1) : 219-220. doi: 10.3934/dcds.2007.18.219

[6]

Freddy Dumortier, Robert Roussarie. Erratum. Discrete and Continuous Dynamical Systems, 2008, 22 (3) : 816-816. doi: 10.3934/dcds.2008.22.816

[7]

M. R. Hassan. Erratum. Journal of Industrial and Management Optimization, 2021, 17 (4) : 2277-2277. doi: 10.3934/jimo.2021064

[8]

François Genoud. Erratum. Discrete and Continuous Dynamical Systems, 2010, 26 (3) : 1119-1120. doi: 10.3934/dcds.2010.26.1119

[9]

Bernhard Kawohl. Erratum. Discrete and Continuous Dynamical Systems, 2007, 17 (3) : 690-690. doi: 10.3934/dcds.2007.17.690

[10]

Inwon C. Kim. Erratum. Discrete and Continuous Dynamical Systems, 2011, 30 (1) : 375-377. doi: 10.3934/dcds.2011.30.375

[11]

Antoine Gloria Cermics. Erratum. Networks and Heterogeneous Media, 2006, 1 (3) : 513-514. doi: 10.3934/nhm.2006.1.513

[12]

John B. Little. Erratum. Advances in Mathematics of Communications, 2008, 2 (3) : 344-345. doi: 10.3934/amc.2008.2.344

[13]

Urszula Ledzewicz, Andrzej Swierniak. ERRATUM. Mathematical Biosciences & Engineering, 2005, 2 (3) : 671-671. doi: 10.3934/mbe.2005.2.671

[14]

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder. Erratum. Advances in Mathematics of Communications, 2010, 4 (4) : 597-597. doi: 10.3934/amc.2010.4.597

[15]

David Auger, Irène Charon, Iiro Honkala, Olivier Hudry, Antoine Lobstein. Erratum. Advances in Mathematics of Communications, 2009, 3 (4) : 429-430. doi: 10.3934/amc.2009.3.429

[16]

Rana D. Parshad. Asymptotic behaviour of the Darcy-Boussinesq system at large Darcy-Prandtl number. Discrete and Continuous Dynamical Systems, 2010, 26 (4) : 1441-1469. doi: 10.3934/dcds.2010.26.1441

[17]

Jungho Park. Dynamic bifurcation theory of Rayleigh-Bénard convection with infinite Prandtl number. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 591-604. doi: 10.3934/dcdsb.2006.6.591

[18]

Jingrui Su. Global existence and low Mach number limit to a 3D compressible micropolar fluids model in a bounded domain. Discrete and Continuous Dynamical Systems, 2017, 37 (6) : 3423-3434. doi: 10.3934/dcds.2017145

[19]

Sijia Zhong, Daoyuan Fang. $L^2$-concentration phenomenon for Zakharov system below energy norm II. Communications on Pure and Applied Analysis, 2009, 8 (3) : 1117-1132. doi: 10.3934/cpaa.2009.8.1117

[20]

Rohit Kumar, V.V.M.S. Chandramouli. Period tripling and quintupling renormalizations below $ C^2 $ space. Discrete and Continuous Dynamical Systems, 2021, 41 (12) : 5633-5658. doi: 10.3934/dcds.2021091

2021 Impact Factor: 1.398

Metrics

  • PDF downloads (142)
  • HTML views (78)
  • Cited by (0)

[Back to Top]