# American Institute of Mathematical Sciences

2004, 1(2): 215-222. doi: 10.3934/mbe.2004.1.215

## Stoichiometric Plant-Herbivore Models and Their Interpretation

 1 Department of Mathematics, Arizona State University, Tempe, AZ 85287-1804 2 Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Nieuwe Achtergracht 127, 1018 WS Amsterdam, Netherlands 3 Department of Biology, Arizona State University, Tempe, AZ 85287-1501, United States

Received  May 2004 Published  July 2004

The purpose of this note is to mechanistically formulate a mathematically tractable model that specifically deals with the dynamics of plant-herbivore interaction in a closed phosphorous (P) limiting environment. The key to our approach is the employment of the plant cell P quota and the Droop equation for its growth. Our model takes the simple form of a system of two autonomous ordinary differential equations. It can be shown that our model includes the LKE model (Loladze, Kuang and Elser (2000)) as a special case. Our study reveals that the details of ecological stoichiometry models really matter for quantitative predictions of plant-herbivore dynamics, especially at intermediate ranges of the carrying capacity.
Citation: Yang Kuang, Jef Huisman, James J. Elser. Stoichiometric Plant-Herbivore Models and Their Interpretation. Mathematical Biosciences & Engineering, 2004, 1 (2) : 215-222. doi: 10.3934/mbe.2004.1.215
 [1] Yanfei Du, Ben Niu, Junjie Wei. A predator-prey model with cooperative hunting in the predator and group defense in the prey. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021298 [2] Peng Feng. On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences & Engineering, 2014, 11 (4) : 807-821. doi: 10.3934/mbe.2014.11.807 [3] Julián López-Gómez, Eduardo Muñoz-Hernández. A spatially heterogeneous predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2085-2113. doi: 10.3934/dcdsb.2020081 [4] Yu-Shuo Chen, Jong-Shenq Guo, Masahiko Shimojo. Recent developments on a singular predator-prey model. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1811-1825. doi: 10.3934/dcdsb.2020040 [5] Ronald E. Mickens. Analysis of a new class of predator-prey model. Conference Publications, 2001, 2001 (Special) : 265-269. doi: 10.3934/proc.2001.2001.265 [6] Dingyong Bai, Jianshe Yu, Yun Kang. Spatiotemporal dynamics of a diffusive predator-prey model with generalist predator. Discrete and Continuous Dynamical Systems - S, 2020, 13 (11) : 2949-2973. doi: 10.3934/dcdss.2020132 [7] Yang Lu, Xia Wang, Shengqiang Liu. A non-autonomous predator-prey model with infected prey. Discrete and Continuous Dynamical Systems - B, 2018, 23 (9) : 3817-3836. doi: 10.3934/dcdsb.2018082 [8] Miljana JovanoviĆ, Marija KrstiĆ. Extinction in stochastic predator-prey population model with Allee effect on prey. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2651-2667. doi: 10.3934/dcdsb.2017129 [9] Xiaoling Li, Guangping Hu, Zhaosheng Feng, Dongliang Li. A periodic and diffusive predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 445-461. doi: 10.3934/dcdss.2017021 [10] Sílvia Cuadrado. Stability of equilibria of a predator-prey model of phenotype evolution. Mathematical Biosciences & Engineering, 2009, 6 (4) : 701-718. doi: 10.3934/mbe.2009.6.701 [11] Gianni Gilioli, Sara Pasquali, Fabrizio Ruggeri. Nonlinear functional response parameter estimation in a stochastic predator-prey model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 75-96. doi: 10.3934/mbe.2012.9.75 [12] Shanshan Chen. Nonexistence of nonconstant positive steady states of a diffusive predator-prey model. Communications on Pure and Applied Analysis, 2018, 17 (2) : 477-485. doi: 10.3934/cpaa.2018026 [13] Jiang Liu, Xiaohui Shang, Zengji Du. Traveling wave solutions of a reaction-diffusion predator-prey model. Discrete and Continuous Dynamical Systems - S, 2017, 10 (5) : 1063-1078. doi: 10.3934/dcdss.2017057 [14] Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607 [15] Yaying Dong, Shanbing Li, Yanling Li. Effects of dispersal for a predator-prey model in a heterogeneous environment. Communications on Pure and Applied Analysis, 2019, 18 (5) : 2511-2528. doi: 10.3934/cpaa.2019114 [16] Yinshu Wu, Wenzhang Huang. Global stability of the predator-prey model with a sigmoid functional response. Discrete and Continuous Dynamical Systems - B, 2020, 25 (3) : 1159-1167. doi: 10.3934/dcdsb.2019214 [17] Guihong Fan, Gail S. K. Wolkowicz. Chaotic dynamics in a simple predator-prey model with discrete delay. Discrete and Continuous Dynamical Systems - B, 2021, 26 (1) : 191-216. doi: 10.3934/dcdsb.2020263 [18] Wenshu Zhou, Hongxing Zhao, Xiaodan Wei, Guokai Xu. Existence of positive steady states for a predator-prey model with diffusion. Communications on Pure and Applied Analysis, 2013, 12 (5) : 2189-2201. doi: 10.3934/cpaa.2013.12.2189 [19] Yunfeng Liu, Zhiming Guo, Mohammad El Smaily, Lin Wang. A Leslie-Gower predator-prey model with a free boundary. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 2063-2084. doi: 10.3934/dcdss.2019133 [20] Antoni Leon Dawidowicz, Anna Poskrobko. Stability problem for the age-dependent predator-prey model. Evolution Equations and Control Theory, 2018, 7 (1) : 79-93. doi: 10.3934/eect.2018005

2018 Impact Factor: 1.313