2005, 2(1): 1-23. doi: 10.3934/mbe.2005.2.1

Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data


Department of Electrical Engineering, Arizona State University, Tempe, AZ 85287, United States


School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287-5706, United States


Courant Institute, New York University, New York, NY 10012, United States


Department of Bioengineering, Arizona State University, Tempe, AZ 85281, United States

Received  August 2004 Revised  October 2004 Published  November 2004

A basic task in understanding the neural mechanism of learning and adaptation is to detect and characterize neural interactions and their changes in response to new experiences. Recent experimental work has indicated that neural interactions in the primary motor cortex of the monkey brain tend to change their preferred directions during adaptation to an external force field. To quantify such changes, it is necessary to develop computational methodology for data analysis. Given that typical experimental data consist of spike trains recorded from individual neurons, probing the strength of neural interactions and their changes is extremely challenging. We recently reported in a brief communication [Zhu et al., Neural Computations 15 , 2359 (2003)] a general procedure to detect and quantify the causal interactions among neurons, which is based on the method of directed transfer function derived from a class of multivariate, linear stochastic models. The procedure was applied to spike trains from neurons in the primary motor cortex of the monkey brain during adaptation, where monkeys were trained to learn a new skill by moving their arms to reach a target under external perturbations. Our computation and analysis indicated that the adaptation tends to alter the connection topology of the underlying neural network, yet the average interaction strength in the network is approximately conserved before and after the adaptation. The present paper gives a detailed account of this procedure and its applicability to spike-train data in terms of the hypotheses, theory, computational methods, control test, and extensive analysis of experimental data.
Citation: Liqiang Zhu, Ying-Cheng Lai, Frank C. Hoppensteadt, Jiping He. Characterization of Neural Interaction During Learning and Adaptation from Spike-Train Data. Mathematical Biosciences & Engineering, 2005, 2 (1) : 1-23. doi: 10.3934/mbe.2005.2.1

Danilo Costarelli, Gianluca Vinti. Asymptotic expansions and Voronovskaja type theorems for the multivariate neural network operators. Mathematical Foundations of Computing, 2020, 3 (1) : 41-50. doi: 10.3934/mfc.2020004


Xilin Fu, Zhang Chen. New discrete analogue of neural networks with nonlinear amplification function and its periodic dynamic analysis. Conference Publications, 2007, 2007 (Special) : 391-398. doi: 10.3934/proc.2007.2007.391


D. Warren, K Najarian. Learning theory applied to Sigmoid network classification of protein biological function using primary protein structure. Conference Publications, 2003, 2003 (Special) : 898-904. doi: 10.3934/proc.2003.2003.898


Rui Hu, Yuan Yuan. Stability, bifurcation analysis in a neural network model with delay and diffusion. Conference Publications, 2009, 2009 (Special) : 367-376. doi: 10.3934/proc.2009.2009.367


Leong-Kwan Li, Sally Shao. Convergence analysis of the weighted state space search algorithm for recurrent neural networks. Numerical Algebra, Control & Optimization, 2014, 4 (3) : 193-207. doi: 10.3934/naco.2014.4.193


Yuantian Xia, Juxiang Zhou, Tianwei Xu, Wei Gao. An improved deep convolutional neural network model with kernel loss function in image classification. Mathematical Foundations of Computing, 2020, 3 (1) : 51-64. doi: 10.3934/mfc.2020005


Ying Sue Huang. Resynchronization of delayed neural networks. Discrete & Continuous Dynamical Systems, 2001, 7 (2) : 397-401. doi: 10.3934/dcds.2001.7.397


Stephen Coombes, Helmut Schmidt, Carlo R. Laing, Nils Svanstedt, John A. Wyller. Waves in random neural media. Discrete & Continuous Dynamical Systems, 2012, 32 (8) : 2951-2970. doi: 10.3934/dcds.2012.32.2951


Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457


Zhigang Zeng, Tingwen Huang. New passivity analysis of continuous-time recurrent neural networks with multiple discrete delays. Journal of Industrial & Management Optimization, 2011, 7 (2) : 283-289. doi: 10.3934/jimo.2011.7.283


Ozlem Faydasicok. Further stability analysis of neutral-type Cohen-Grossberg neural networks with multiple delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1245-1258. doi: 10.3934/dcdss.2020359


Kuo-Shou Chiu. Periodicity and stability analysis of impulsive neural network models with generalized piecewise constant delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021060


Graciela Canziani, Rosana Ferrati, Claudia Marinelli, Federico Dukatz. Artificial neural networks and remote sensing in the analysis of the highly variable Pampean shallow lakes. Mathematical Biosciences & Engineering, 2008, 5 (4) : 691-711. doi: 10.3934/mbe.2008.5.691


Jianfeng Feng, Mariya Shcherbina, Brunello Tirozzi. Stability of the dynamics of an asymmetric neural network. Communications on Pure & Applied Analysis, 2009, 8 (2) : 655-671. doi: 10.3934/cpaa.2009.8.655


Shinsuke Koyama, Ryota Kobayashi. Fluctuation scaling in neural spike trains. Mathematical Biosciences & Engineering, 2016, 13 (3) : 537-550. doi: 10.3934/mbe.2016006


Tatyana S. Turova. Structural phase transitions in neural networks. Mathematical Biosciences & Engineering, 2014, 11 (1) : 139-148. doi: 10.3934/mbe.2014.11.139


Mario Roy, Mariusz Urbański. Multifractal analysis for conformal graph directed Markov systems. Discrete & Continuous Dynamical Systems, 2009, 25 (2) : 627-650. doi: 10.3934/dcds.2009.25.627


Stephen Coombes, Helmut Schmidt. Neural fields with sigmoidal firing rates: Approximate solutions. Discrete & Continuous Dynamical Systems, 2010, 28 (4) : 1369-1379. doi: 10.3934/dcds.2010.28.1369


Antonio Di Crescenzo, Maria Longobardi, Barbara Martinucci. On a spike train probability model with interacting neural units. Mathematical Biosciences & Engineering, 2014, 11 (2) : 217-231. doi: 10.3934/mbe.2014.11.217


Sean D. Lawley, Janet A. Best, Michael C. Reed. Neurotransmitter concentrations in the presence of neural switching in one dimension. Discrete & Continuous Dynamical Systems - B, 2016, 21 (7) : 2255-2273. doi: 10.3934/dcdsb.2016046

2018 Impact Factor: 1.313


  • PDF downloads (32)
  • HTML views (0)
  • Cited by (19)

[Back to Top]