• Previous Article
    The Ecology and Evolutionary Biology of Cancer: A Review of Mathematical Models of Necrosis and Tumor Cell Diversity
  • MBE Home
  • This Issue
  • Next Article
    Two-Species Competition with High Dispersal: The Winning Strategy
2005, 2(2): 363-380. doi: 10.3934/mbe.2005.2.363

A mathematical model for treatment-resistant mutations of HIV


American Institute of Mathematics, 360 Portage Avenue, Palo Alto, CA 94306, United States


Department of Mathematics, Harvey Mudd College, 1250 N. Dartmouth Avenue, Claremont, CA 91711, United States

Received  September 2004 Revised  March 2005 Published  March 2005

In this paper, we propose and analyze a mathematical model, in the form of a system of ordinary differential equations, governing mutated strains of human immunodeficiency virus (HIV) and their interactions with the immune system and treatments. Our model incorporates two types of resistant mutations: strains that are not responsive to protease inhibitors, and strains that are not responsive to reverse transcriptase inhibitors. It also includes strains that do not have either of these two types of resistance (wild-type virus) and strains that have both types. We perform our analysis by changing the system of ordinary differential equations (ODEs) to a simple single-variable ODE, then identifying equilibria and determining stability. We carry out numerical calculations that illustrate the behavior of the system. We also examine the effects of various treatment regimens on the development of treatment-resistant mutations of HIV in this model.
Citation: Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363

Abdessamad Tridane, Yang Kuang. Modeling the interaction of cytotoxic T lymphocytes and influenza virus infected epithelial cells. Mathematical Biosciences & Engineering, 2010, 7 (1) : 171-185. doi: 10.3934/mbe.2010.7.171


Linghui Yu, Zhipeng Qiu, Ting Guo. Modeling the effect of activation of CD4$^+$ T cells on HIV dynamics. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4491-4513. doi: 10.3934/dcdsb.2021238


Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi. Mathematical modeling on helper T cells in a tumor immune system. Discrete and Continuous Dynamical Systems - B, 2014, 19 (1) : 55-72. doi: 10.3934/dcdsb.2014.19.55


Lisette dePillis, Trevor Caldwell, Elizabeth Sarapata, Heather Williams. Mathematical modeling of regulatory T cell effects on renal cell carcinoma treatment. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 915-943. doi: 10.3934/dcdsb.2013.18.915


Wenbo Cheng, Wanbiao Ma, Songbai Guo. A class of virus dynamic model with inhibitory effect on the growth of uninfected T cells caused by infected T cells and its stability analysis. Communications on Pure and Applied Analysis, 2016, 15 (3) : 795-806. doi: 10.3934/cpaa.2016.15.795


D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 59-73. doi: 10.3934/mbe.2013.10.59


Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete and Continuous Dynamical Systems - B, 2013, 18 (3) : 769-782. doi: 10.3934/dcdsb.2013.18.769


Oluwaseun Sharomi, Chandra N. Podder, Abba B. Gumel, Baojun Song. Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Mathematical Biosciences & Engineering, 2008, 5 (1) : 145-174. doi: 10.3934/mbe.2008.5.145


Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777-804. doi: 10.3934/mbe.2017043


Donna J. Cedio-Fengya, John G. Stevens. Mathematical modeling of biowall reactors for in-situ groundwater treatment. Mathematical Biosciences & Engineering, 2006, 3 (4) : 615-634. doi: 10.3934/mbe.2006.3.615


Esther Chigidi, Edward M. Lungu. HIV model incorporating differential progression for treatment-naive and treatment-experienced infectives. Mathematical Biosciences & Engineering, 2009, 6 (3) : 427-450. doi: 10.3934/mbe.2009.6.427


Brandy Rapatski, Juan Tolosa. Modeling and analysis of the San Francisco City Clinic Cohort (SFCCC) HIV-epidemic including treatment. Mathematical Biosciences & Engineering, 2014, 11 (3) : 599-619. doi: 10.3934/mbe.2014.11.599


Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. An optimal control problem in HIV treatment. Conference Publications, 2013, 2013 (special) : 311-322. doi: 10.3934/proc.2013.2013.311


Arni S. R. Srinivasa Rao, Kurien Thomas, Kurapati Sudhakar, Philip K. Maini. HIV/AIDS epidemic in India and predicting the impact of the national response: Mathematical modeling and analysis. Mathematical Biosciences & Engineering, 2009, 6 (4) : 779-813. doi: 10.3934/mbe.2009.6.779


Jaouad Danane, Karam Allali. Optimal control of an HIV model with CTL cells and latently infected cells. Numerical Algebra, Control and Optimization, 2020, 10 (2) : 207-225. doi: 10.3934/naco.2019048


Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181


A. K. Misra, Gauri Agrawal, Kusum Lata. Modeling the influence of human population and human population augmented pollution on rainfall. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2979-3003. doi: 10.3934/dcdsb.2021169


Frédéric Gibou, Doron Levy, Carlos Cárdenas, Pingyu Liu, Arthur Boyer. Partial Differential Equations-Based Segmentation for Radiotherapy Treatment Planning. Mathematical Biosciences & Engineering, 2005, 2 (2) : 209-226. doi: 10.3934/mbe.2005.2.209


Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl. Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences & Engineering, 2012, 9 (2) : 241-257. doi: 10.3934/mbe.2012.9.241


Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1

2018 Impact Factor: 1.313


  • PDF downloads (34)
  • HTML views (0)
  • Cited by (8)

Other articles
by authors

[Back to Top]