
Previous Article
Internal eradicability for an epidemiological model with diffusion
 MBE Home
 This Issue

Next Article
From the Guest Editors
Using Mathematical Modeling as a Resource in Clinical Trials
1.  Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126, United States 
[1] 
Tianfa Xie, ZhongZhan Zhang. Identifiability of models for clinical trials with noncompliance. Discrete & Continuous Dynamical Systems  B, 2004, 4 (3) : 805811. doi: 10.3934/dcdsb.2004.4.805 
[2] 
Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289306. doi: 10.3934/mbe.2011.8.289 
[3] 
Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777804. doi: 10.3934/mbe.2017043 
[4] 
Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151165. doi: 10.3934/mbe.2013.10.151 
[5] 
SilviuIulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete & Continuous Dynamical Systems  B, 2010, 13 (1) : 129156. doi: 10.3934/dcdsb.2010.13.129 
[6] 
Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 147159. doi: 10.3934/dcdsb.2004.4.147 
[7] 
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143164. doi: 10.3934/mbe.2017010 
[8] 
Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, ChaeOk Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : iiv. doi: 10.3934/mbe.2015.12.6i 
[9] 
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems  B, 2021, 26 (1) : 483499. doi: 10.3934/dcdsb.2020213 
[10] 
M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks & Heterogeneous Media, 2006, 1 (3) : 399439. doi: 10.3934/nhm.2006.1.399 
[11] 
Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete & Continuous Dynamical Systems  B, 2013, 18 (4) : iiii. doi: 10.3934/dcdsb.2013.18.4i 
[12] 
Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905918. doi: 10.3934/mbe.2010.7.905 
[13] 
Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCRABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 99114. doi: 10.3934/dcdsb.2004.4.99 
[14] 
HsiuChuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete & Continuous Dynamical Systems  B, 2016, 21 (4) : 12791295. doi: 10.3934/dcdsb.2016.21.1279 
[15] 
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 8999. doi: 10.3934/proc.1998.1998.89 
[16] 
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263278. doi: 10.3934/mbe.2013.10.263 
[17] 
Marcello Delitala, Tommaso Lorenzi. Recognition and learning in a mathematical model for immune response against cancer. Discrete & Continuous Dynamical Systems  B, 2013, 18 (4) : 891914. doi: 10.3934/dcdsb.2013.18.891 
[18] 
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 12231240. doi: 10.3934/mbe.2016040 
[19] 
Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete & Continuous Dynamical Systems  B, 2013, 18 (4) : 945967. doi: 10.3934/dcdsb.2013.18.945 
[20] 
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565578. doi: 10.3934/mbe.2013.10.565 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]