
Previous Article
Internal eradicability for an epidemiological model with diffusion
 MBE Home
 This Issue

Next Article
From the Guest Editors
Using Mathematical Modeling as a Resource in Clinical Trials
1.  Department of Mathematics, Elmhurst College, 190 Prospect Avenue, Elmhurst, IL 60126, United States 
[1] 
Tianfa Xie, ZhongZhan Zhang. Identifiability of models for clinical trials with noncompliance. Discrete and Continuous Dynamical Systems  B, 2004, 4 (3) : 805811. doi: 10.3934/dcdsb.2004.4.805 
[2] 
Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289306. doi: 10.3934/mbe.2011.8.289 
[3] 
Alacia M. Voth, John G. Alford, Edward W. Swim. Mathematical modeling of continuous and intermittent androgen suppression for the treatment of advanced prostate cancer. Mathematical Biosciences & Engineering, 2017, 14 (3) : 777804. doi: 10.3934/mbe.2017043 
[4] 
Elena Fimmel, Yury S. Semenov, Alexander S. Bratus. On optimal and suboptimal treatment strategies for a mathematical model of leukemia. Mathematical Biosciences & Engineering, 2013, 10 (1) : 151165. doi: 10.3934/mbe.2013.10.151 
[5] 
SilviuIulian Niculescu, Peter S. Kim, Keqin Gu, Peter P. Lee, Doron Levy. Stability crossing boundaries of delay systems modeling immune dynamics in leukemia. Discrete and Continuous Dynamical Systems  B, 2010, 13 (1) : 129156. doi: 10.3934/dcdsb.2010.13.129 
[6] 
Avner Friedman. A hierarchy of cancer models and their mathematical challenges. Discrete and Continuous Dynamical Systems  B, 2004, 4 (1) : 147159. doi: 10.3934/dcdsb.2004.4.147 
[7] 
Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143164. doi: 10.3934/mbe.2017010 
[8] 
Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCRABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete and Continuous Dynamical Systems  B, 2004, 4 (1) : 99114. doi: 10.3934/dcdsb.2004.4.99 
[9] 
Yangjin Kim, Avner Friedman, Eugene Kashdan, Urszula Ledzewicz, ChaeOk Yun. Application of ecological and mathematical theory to cancer: New challenges. Mathematical Biosciences & Engineering, 2015, 12 (6) : iiv. doi: 10.3934/mbe.2015.12.6i 
[10] 
Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete and Continuous Dynamical Systems  B, 2021, 26 (1) : 483499. doi: 10.3934/dcdsb.2020213 
[11] 
M.A.J Chaplain, G. Lolas. Mathematical modelling of cancer invasion of tissue: dynamic heterogeneity. Networks and Heterogeneous Media, 2006, 1 (3) : 399439. doi: 10.3934/nhm.2006.1.399 
[12] 
Amina Eladdadi, Noura Yousfi, Abdessamad Tridane. Preface: Special issue on cancer modeling, analysis and control. Discrete and Continuous Dynamical Systems  B, 2013, 18 (4) : iiii. doi: 10.3934/dcdsb.2013.18.4i 
[13] 
Cristian Tomasetti, Doron Levy. An elementary approach to modeling drug resistance in cancer. Mathematical Biosciences & Engineering, 2010, 7 (4) : 905918. doi: 10.3934/mbe.2010.7.905 
[14] 
HsiuChuan Wei. Mathematical and numerical analysis of a mathematical model of mixed immunotherapy and chemotherapy of cancer. Discrete and Continuous Dynamical Systems  B, 2016, 21 (4) : 12791295. doi: 10.3934/dcdsb.2016.21.1279 
[15] 
Gang Bao. Mathematical modeling of nonlinear diffracvtive optics. Conference Publications, 1998, 1998 (Special) : 8999. doi: 10.3934/proc.1998.1998.89 
[16] 
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263278. doi: 10.3934/mbe.2013.10.263 
[17] 
Marcello Delitala, Tommaso Lorenzi. Recognition and learning in a mathematical model for immune response against cancer. Discrete and Continuous Dynamical Systems  B, 2013, 18 (4) : 891914. doi: 10.3934/dcdsb.2013.18.891 
[18] 
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 12231240. doi: 10.3934/mbe.2016040 
[19] 
Harsh Vardhan Jain, Avner Friedman. Modeling prostate cancer response to continuous versus intermittent androgen ablation therapy. Discrete and Continuous Dynamical Systems  B, 2013, 18 (4) : 945967. doi: 10.3934/dcdsb.2013.18.945 
[20] 
Baba Issa Camara, Houda Mokrani, Evans K. Afenya. Mathematical modeling of glioma therapy using oncolytic viruses. Mathematical Biosciences & Engineering, 2013, 10 (3) : 565578. doi: 10.3934/mbe.2013.10.565 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]