-
Previous Article
Immunotherapy: An Optimal Control Theory Approach
- MBE Home
- This Issue
-
Next Article
Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis
Interactions of Neanderthals and Modern Humans: What Can Be Inferred from Mitochondrial DNA?
1. | Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland |
2. | Department of Statistics, Rice University, 6100 Main Street, Houston, TX 77005, United States |
[1] |
Messoud Efendiev, Mitsuharu Ôtani, Hermann J. Eberl. Mathematical analysis of an in vivo model of mitochondrial swelling. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 4131-4158. doi: 10.3934/dcds.2017176 |
[2] |
Diana M. Thomas, Lynn Vandemuelebroeke, Kenneth Yamaguchi. A mathematical evolution model for phytoremediation of metals. Discrete and Continuous Dynamical Systems - B, 2005, 5 (2) : 411-422. doi: 10.3934/dcdsb.2005.5.411 |
[3] |
Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022 |
[4] |
Bashar Ibrahim. Mathematical analysis and modeling of DNA segregation mechanisms. Mathematical Biosciences & Engineering, 2018, 15 (2) : 429-440. doi: 10.3934/mbe.2018019 |
[5] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[6] |
Sabine Eisenhofer, Messoud A. Efendiev, Mitsuharu Ôtani, Sabine Schulz, Hans Zischka. On an ODE-PDE coupling model of the mitochondrial swelling process. Discrete and Continuous Dynamical Systems - B, 2015, 20 (4) : 1031-1057. doi: 10.3934/dcdsb.2015.20.1031 |
[7] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[8] |
Raghda A. M. Attia, Dumitru Baleanu, Dianchen Lu, Mostafa M. A. Khater, El-Sayed Ahmed. Computational and numerical simulations for the deoxyribonucleic acid (DNA) model. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3459-3478. doi: 10.3934/dcdss.2021018 |
[9] |
Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163 |
[10] |
Radosław Czaja, Waldyr M. Oliva, Carlos Rocha. On a definition of Morse-Smale evolution processes. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3601-3623. doi: 10.3934/dcds.2017155 |
[11] |
Azucena Álvarez, Francisco R. Romero, José M. Romero, Juan F. R. Archilla. Nonsymmetric moving breather collisions in the Peyrard-Bishop DNA model. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 995-1006. doi: 10.3934/dcdss.2011.4.995 |
[12] |
Conrad Bertrand Tabi, Alidou Mohamadou, Timoleon Crepin Kofane. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity. Mathematical Biosciences & Engineering, 2008, 5 (1) : 205-216. doi: 10.3934/mbe.2008.5.205 |
[13] |
J. Nieto, M. O. Vásquez. Wellposedness of a DNA replication model based on a nucleation-growth process. Communications on Pure and Applied Analysis, 2022, 21 (8) : 2643-2660. doi: 10.3934/cpaa.2022065 |
[14] |
Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127 |
[15] |
Diego Samuel Rodrigues, Paulo Fernando de Arruda Mancera. Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Mathematical Biosciences & Engineering, 2013, 10 (1) : 221-234. doi: 10.3934/mbe.2013.10.221 |
[16] |
Akisato Kubo. Nonlinear evolution equations associated with mathematical models. Conference Publications, 2011, 2011 (Special) : 881-890. doi: 10.3934/proc.2011.2011.881 |
[17] |
Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643 |
[18] |
Jemal Mohammed-Awel, Ruijun Zhao, Eric Numfor, Suzanne Lenhart. Management strategies in a malaria model combining human and transmission-blocking vaccines. Discrete and Continuous Dynamical Systems - B, 2017, 22 (3) : 977-1000. doi: 10.3934/dcdsb.2017049 |
[19] |
Magdalena Graczyk-Kucharska, Robert Olszewski, Marek Golinski, Malgorzata Spychala, Maciej Szafranski, Gerhard Wilhelm Weber, Marek Miadowicz. Human resources optimization with MARS and ANN: Innovation geolocation model for generation Z. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021149 |
[20] |
Med Amine Laribi, Saïd Zeghloul. Redundancy understanding and theory for robotics teaching: Application on a human finger model. STEM Education, 2021, 1 (1) : 17-31. doi: 10.3934/steme.2021002 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]