2005, 2(4): 753-769. doi: 10.3934/mbe.2005.2.753

The Role of Vaccination in the Control of SARS


Department of Mathematics, Harvey Mudd College, 340 E. Foothill Blvd. Claremont, CA 91711, United States


Mathematics department, Clarion University of Pennsylvania, Clarion, Pennsylvania 16214, United States


Theoretical Division (MS B284), Los Alamos National Laboratory, Los Alamos, NM 87545, United States


BSCB, Cornell University, Ithaca, NY 14853, United States


College of Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States


Department of Mathematics & Statistics, Arizona State University, Tempe, AZ 85287-1804, United States

Received  June 2005 Revised  September 2005 Published  October 2005

We assess pre-outbreak and during-outbreak vaccination as control strategies for SARS epidemics using a mathematical model that includes susceptible, latent (traced and untraced), infectious, isolated and recovered individuals. Scenarios focusing on policies that include contact tracing and levels of self-isolation among untraced infected individuals are explored. Bounds on the proportion of pre-outbreak successfully vaccinated individuals are provided using the the basic reproductive number. Uncertainty and sensitivity analyses on the reproductive number are carried out. The final epidemic size under different vaccination scenarios is computed.
Citation: Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez. The Role of Vaccination in the Control of SARS. Mathematical Biosciences & Engineering, 2005, 2 (4) : 753-769. doi: 10.3934/mbe.2005.2.753

Haitao Song, Fang Liu, Feng Li, Xiaochun Cao, Hao Wang, Zhongwei Jia, Huaiping Zhu, Michael Y. Li, Wei Lin, Hong Yang, Jianghong Hu, Zhen Jin. Modeling the second outbreak of COVID-19 with isolation and contact tracing. Discrete and Continuous Dynamical Systems - B, 2022, 27 (10) : 5757-5777. doi: 10.3934/dcdsb.2021294


Hiroshi Ito, Michael Malisoff, Frédéric Mazenc. Feedback control of isolation and contact for SIQR epidemic model via strict Lyapunov function. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022043


Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61


Sunmoo Yoon, Da Kuang, Peter Broadwell, Haeyoung Lee, Michelle Odlum. What can we learn about the Middle East Respiratory Syndrome (MERS) outbreak from tweets?. Big Data & Information Analytics, 2017  doi: 10.3934/bdia.2017013


Xi Huo. Modeling of contact tracing in epidemic populations structured by disease age. Discrete and Continuous Dynamical Systems - B, 2015, 20 (6) : 1685-1713. doi: 10.3934/dcdsb.2015.20.1685


Narges Montazeri Shahtori, Tanvir Ferdousi, Caterina Scoglio, Faryad Darabi Sahneh. Quantifying the impact of early-stage contact tracing on controlling Ebola diffusion. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1165-1180. doi: 10.3934/mbe.2018053


Mohammad A. Safi, Abba B. Gumel. Global asymptotic dynamics of a model for quarantine and isolation. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 209-231. doi: 10.3934/dcdsb.2010.14.209


Nguyen Thanh Dieu, Vu Hai Sam, Nguyen Huu Du. Threshold of a stochastic SIQS epidemic model with isolation. Discrete and Continuous Dynamical Systems - B, 2022, 27 (9) : 5009-5028. doi: 10.3934/dcdsb.2021262


Saroj P. Pradhan, Janos Turi. Parameter dependent stability/instability in a human respiratory control system model. Conference Publications, 2013, 2013 (special) : 643-652. doi: 10.3934/proc.2013.2013.643


Qingling Zeng, Kamran Khan, Jianhong Wu, Huaiping Zhu. The utility of preemptive mass influenza vaccination in controlling a SARS outbreak during flu season. Mathematical Biosciences & Engineering, 2007, 4 (4) : 739-754. doi: 10.3934/mbe.2007.4.739


Tomás Caraballo, Mohamed El Fatini, Idriss Sekkak, Regragui Taki, Aziz Laaribi. A stochastic threshold for an epidemic model with isolation and a non linear incidence. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2513-2531. doi: 10.3934/cpaa.2020110


Robert G. McLeod, John F. Brewster, Abba B. Gumel, Dean A. Slonowsky. Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs. Mathematical Biosciences & Engineering, 2006, 3 (3) : 527-544. doi: 10.3934/mbe.2006.3.527


Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485-512. doi: 10.3934/mbe.2006.3.485


Antonio DeSimone, Natalie Grunewald, Felix Otto. A new model for contact angle hysteresis. Networks and Heterogeneous Media, 2007, 2 (2) : 211-225. doi: 10.3934/nhm.2007.2.211


Islam A. Moneim, David Greenhalgh. Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences & Engineering, 2005, 2 (3) : 591-611. doi: 10.3934/mbe.2005.2.591


Alan J. Terry. Pulse vaccination strategies in a metapopulation SIR model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 455-477. doi: 10.3934/mbe.2010.7.455


Tao Feng, Zhipeng Qiu. Global analysis of a stochastic TB model with vaccination and treatment. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2923-2939. doi: 10.3934/dcdsb.2018292


IvÁn Area, FaÏÇal NdaÏrou, Juan J. Nieto, Cristiana J. Silva, Delfim F. M. Torres. Ebola model and optimal control with vaccination constraints. Journal of Industrial and Management Optimization, 2018, 14 (2) : 427-446. doi: 10.3934/jimo.2017054


Qianqian Cui, Zhipeng Qiu, Ling Ding. An SIR epidemic model with vaccination in a patchy environment. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1141-1157. doi: 10.3934/mbe.2017059


Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051

[Back to Top]