-
Previous Article
A Mathematical Model for Fibroblast Growth Factor Competition Based on Enzyme
- MBE Home
- This Issue
-
Next Article
The Role of Vaccination in the Control of SARS
The Effect of the HIV/AIDS Epidemic on Africa's Truck Drivers
1. | Mathematics Department, University of Texas at Arlington, Box 19408, Arlington, TX 76019-0408, United States |
2. | Courant Institute, New York University, 251 Mercer Street, New York, NY 10012, United States |
3. | Department of Mathematics, St. Mary's University, One Camino Santa Maria, San Antonio, TX 78228-8503, United States |
4. | Department of Mathematics, Howard University, 204 Academic Support Building B, Washington, DC 20059, United States |
5. | Facultad de Ciencias, Universidad de Colima, Bernal Díaz del Castillo No. 340, Col. Villa San Sebastián, Colima, Colima, México, C.P. 28045, Mexico |
[1] |
Gigi Thomas, Edward M. Lungu. A two-sex model for the influence of heavy alcohol consumption on the spread of HIV/AIDS. Mathematical Biosciences & Engineering, 2010, 7 (4) : 871-904. doi: 10.3934/mbe.2010.7.871 |
[2] |
Brandy Rapatski, Petra Klepac, Stephen Dueck, Maoxing Liu, Leda Ivic Weiss. Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000. Mathematical Biosciences & Engineering, 2006, 3 (3) : 545-556. doi: 10.3934/mbe.2006.3.545 |
[3] |
Miaomiao Gao, Daqing Jiang, Tasawar Hayat, Ahmed Alsaedi, Bashir Ahmad. Dynamics of a stochastic HIV/AIDS model with treatment under regime switching. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3177-3211. doi: 10.3934/dcdsb.2021181 |
[4] |
Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 |
[5] |
Praveen Kumar Gupta, Ajoy Dutta. Numerical solution with analysis of HIV/AIDS dynamics model with effect of fusion and cure rate. Numerical Algebra, Control and Optimization, 2019, 9 (4) : 393-399. doi: 10.3934/naco.2019038 |
[6] |
Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181 |
[7] |
Yacouba Simporé, Oumar Traoré. Null controllability of a nonlinear age, space and two-sex structured population dynamics model. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021052 |
[8] |
Cristiana J. Silva, Delfim F. M. Torres. A TB-HIV/AIDS coinfection model and optimal control treatment. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4639-4663. doi: 10.3934/dcds.2015.35.4639 |
[9] |
Cristiana J. Silva. Stability and optimal control of a delayed HIV/AIDS-PrEP model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 639-654. doi: 10.3934/dcdss.2021156 |
[10] |
Tufail Malik, Abba Gumel, Elamin H. Elbasha. Qualitative analysis of an age- and sex-structured vaccination model for human papillomavirus. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 2151-2174. doi: 10.3934/dcdsb.2013.18.2151 |
[11] |
Bing Li, Yuming Chen, Xuejuan Lu, Shengqiang Liu. A delayed HIV-1 model with virus waning term. Mathematical Biosciences & Engineering, 2016, 13 (1) : 135-157. doi: 10.3934/mbe.2016.13.135 |
[12] |
Ram P. Sigdel, C. Connell McCluskey. Disease dynamics for the hometown of migrant workers. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1175-1180. doi: 10.3934/mbe.2014.11.1175 |
[13] |
Hongyong Zhao, Peng Wu, Shigui Ruan. Dynamic analysis and optimal control of a three-age-class HIV/AIDS epidemic model in China. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3491-3521. doi: 10.3934/dcdsb.2020070 |
[14] |
Haitao Song, Weihua Jiang, Shengqiang Liu. Virus dynamics model with intracellular delays and immune response. Mathematical Biosciences & Engineering, 2015, 12 (1) : 185-208. doi: 10.3934/mbe.2015.12.185 |
[15] |
Hui li, Manjun Ma. Global dynamics of a virus infection model with repulsive effect. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4783-4797. doi: 10.3934/dcdsb.2019030 |
[16] |
Toru Sasaki, Takashi Suzuki. Asymptotic behaviour of the solutions to a virus dynamics model with diffusion. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 525-541. doi: 10.3934/dcdsb.2017206 |
[17] |
Nikolay Pertsev, Konstantin Loginov, Gennady Bocharov. Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2365-2384. doi: 10.3934/dcdss.2020141 |
[18] |
Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Singularity of controls in a simple model of acquired chemotherapy resistance. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2039-2052. doi: 10.3934/dcdsb.2019083 |
[19] |
Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125 |
[20] |
Renato Soeiro, Abdelrahim Mousa, Tânia R. Oliveira, Alberto A. Pinto. Dynamics of human decisions. Journal of Dynamics and Games, 2014, 1 (1) : 121-151. doi: 10.3934/jdg.2014.1.121 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]