-
Previous Article
Travelling wave solutions for higher-order wave equations of KDV type (III)
- MBE Home
- This Issue
-
Next Article
The stability of an SIR epidemic model with time delays
A competition model of the chemostat with an external inhibitor
1. | Department of Applied Mathematics, Xi'an Jiaotong University, Xi'an 710049, China, China, China |
2. | Systems Engineering Institute, Xi'an Jiaotong University, Xi'an 710049, China |
[1] |
Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari. Competition for a single resource and coexistence of several species in the chemostat. Mathematical Biosciences & Engineering, 2016, 13 (4) : 631-652. doi: 10.3934/mbe.2016012 |
[2] |
Hua Nie, Yuan Lou, Jianhua Wu. Competition between two similar species in the unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 621-639. doi: 10.3934/dcdsb.2016.21.621 |
[3] |
Hua Nie, Feng-Bin Wang. Competition for one nutrient with recycling and allelopathy in an unstirred chemostat. Discrete and Continuous Dynamical Systems - B, 2015, 20 (7) : 2129-2155. doi: 10.3934/dcdsb.2015.20.2129 |
[4] |
Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete and Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156 |
[5] |
Mohamed Dellal, Bachir Bar, Mustapha Lakrib. A competition model in the chemostat with allelopathy and substrate inhibition. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2025-2050. doi: 10.3934/dcdsb.2021120 |
[6] |
Frédéric Mazenc, Michael Malisoff, Patrick D. Leenheer. On the stability of periodic solutions in the perturbed chemostat. Mathematical Biosciences & Engineering, 2007, 4 (2) : 319-338. doi: 10.3934/mbe.2007.4.319 |
[7] |
Ben Niu, Weihua Jiang. Dynamics of a limit cycle oscillator with extended delay feedback. Discrete and Continuous Dynamical Systems - B, 2013, 18 (5) : 1439-1458. doi: 10.3934/dcdsb.2013.18.1439 |
[8] |
Valery A. Gaiko. The geometry of limit cycle bifurcations in polynomial dynamical systems. Conference Publications, 2011, 2011 (Special) : 447-456. doi: 10.3934/proc.2011.2011.447 |
[9] |
Bachir Bar, Tewfik Sari. The operating diagram for a model of competition in a chemostat with an external lethal inhibitor. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2093-2120. doi: 10.3934/dcdsb.2019203 |
[10] |
Hua Nie, Sze-bi Hsu, Jianhua Wu. A competition model with dynamically allocated toxin production in the unstirred chemostat. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1373-1404. doi: 10.3934/cpaa.2017066 |
[11] |
Xiaoqing He, Sze-Bi Hsu, Feng-Bin Wang. A periodic-parabolic Droop model for two species competition in an unstirred chemostat. Discrete and Continuous Dynamical Systems, 2020, 40 (7) : 4427-4451. doi: 10.3934/dcds.2020185 |
[12] |
Magdalena Caubergh, Freddy Dumortier, Robert Roussarie. Alien limit cycles in rigid unfoldings of a Hamiltonian 2-saddle cycle. Communications on Pure and Applied Analysis, 2007, 6 (1) : 1-21. doi: 10.3934/cpaa.2007.6.1 |
[13] |
Jihua Yang, Liqin Zhao. Limit cycle bifurcations for piecewise smooth integrable differential systems. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2417-2425. doi: 10.3934/dcdsb.2017123 |
[14] |
Stijn Luca, Freddy Dumortier, Magdalena Caubergh, Robert Roussarie. Detecting alien limit cycles near a Hamiltonian 2-saddle cycle. Discrete and Continuous Dynamical Systems, 2009, 25 (4) : 1081-1108. doi: 10.3934/dcds.2009.25.1081 |
[15] |
Fangfang Jiang, Junping Shi, Qing-guo Wang, Jitao Sun. On the existence and uniqueness of a limit cycle for a Liénard system with a discontinuity line. Communications on Pure and Applied Analysis, 2016, 15 (6) : 2509-2526. doi: 10.3934/cpaa.2016047 |
[16] |
Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure and Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257 |
[17] |
Sze-Bi Hsu, Junping Shi. Relaxation oscillation profile of limit cycle in predator-prey system. Discrete and Continuous Dynamical Systems - B, 2009, 11 (4) : 893-911. doi: 10.3934/dcdsb.2009.11.893 |
[18] |
Sze-Bi Hsu, Cheng-Che Li. A discrete-delayed model with plasmid-bearing, plasmid-free competition in a chemostat. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 699-718. doi: 10.3934/dcdsb.2005.5.699 |
[19] |
Frederic Mazenc, Gonzalo Robledo, Michael Malisoff. Stability and robustness analysis for a multispecies chemostat model with delays in the growth rates and uncertainties. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1851-1872. doi: 10.3934/dcdsb.2018098 |
[20] |
Zhiqi Lu. Global stability for a chemostat-type model with delayed nutrient recycling. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 663-670. doi: 10.3934/dcdsb.2004.4.663 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]