American Institute of Mathematical Sciences

2006, 3(2): 419-440. doi: 10.3934/mbe.2006.3.419

Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method

 1 Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States 2 Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, United States 3 Department of Mathematics, North Carolina State University, Raleigh, NC 27695, United States

Received  January 2006 Revised  January 2006 Published  February 2006

This paper shows how the multipulse method from digital signal processing can be used to accurately synthesize signals obtained from blood pressure and blood flow velocity sensors during posture change from sitting to standing. The multipulse method can be used to analyze signals that are composed of pulses of varying amplitudes. One of the advantages of the multipulse method is that it is able to produce an accurate and efficient representation of the signals at high resolution. The signals are represented as a set of input impulses passed through an autoregressive (AR) filter. The parameters that define the AR filter can be used to distinguish different conditions. In addition, the AR coefficients can be transformed to tube radii associated with digital wave guides, as well as pole-zero representation. Analysis of the dynamics of the model parameters have potential to provide better insight and understanding of the underlying physiological control mechanisms. For example, our data indicate that the tube radii may be related to the diameter of the blood vessels.
Citation: Derek H. Justice, H. Joel Trussell, Mette S. Olufsen. Analysis of Blood Flow Velocity and Pressure Signals using the Multipulse Method. Mathematical Biosciences & Engineering, 2006, 3 (2) : 419-440. doi: 10.3934/mbe.2006.3.419
 [1] Adélia Sequeira, Rafael F. Santos, Tomáš Bodnár. Blood coagulation dynamics: mathematical modeling and stability results. Mathematical Biosciences & Engineering, 2011, 8 (2) : 425-443. doi: 10.3934/mbe.2011.8.425 [2] Tong Li, Kun Zhao. On a quasilinear hyperbolic system in blood flow modeling. Discrete and Continuous Dynamical Systems - B, 2011, 16 (1) : 333-344. doi: 10.3934/dcdsb.2011.16.333 [3] Olivier Delestre, Arthur R. Ghigo, José-Maria Fullana, Pierre-Yves Lagrée. A shallow water with variable pressure model for blood flow simulation. Networks and Heterogeneous Media, 2016, 11 (1) : 69-87. doi: 10.3934/nhm.2016.11.69 [4] Mette S. Olufsen, Ali Nadim. On deriving lumped models for blood flow and pressure in the systemic arteries. Mathematical Biosciences & Engineering, 2004, 1 (1) : 61-80. doi: 10.3934/mbe.2004.1.61 [5] Christopher Oballe, Alan Cherne, Dave Boothe, Scott Kerick, Piotr J. Franaszczuk, Vasileios Maroulas. Bayesian topological signal processing. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 797-817. doi: 10.3934/dcdss.2021084 [6] Wouter Huberts, E. Marielle H. Bosboom, Frans N. van de Vosse. A lumped model for blood flow and pressure in the systemic arteries based on an approximate velocity profile function. Mathematical Biosciences & Engineering, 2009, 6 (1) : 27-40. doi: 10.3934/mbe.2009.6.27 [7] Ruxandra Stavre. Optimization of the blood pressure with the control in coefficients. Evolution Equations and Control Theory, 2020, 9 (1) : 131-151. doi: 10.3934/eect.2020019 [8] Taebeom Kim, Sunčica Čanić, Giovanna Guidoboni. Existence and uniqueness of a solution to a three-dimensional axially symmetric Biot problem arising in modeling blood flow. Communications on Pure and Applied Analysis, 2010, 9 (4) : 839-865. doi: 10.3934/cpaa.2010.9.839 [9] Abhinav Tandon. Crop - Weed interactive dynamics in the presence of herbicides: Mathematical modeling and analysis. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021244 [10] Georgy Th. Guria, Miguel A. Herrero, Ksenia E. Zlobina. A mathematical model of blood coagulation induced by activation sources. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 175-194. doi: 10.3934/dcds.2009.25.175 [11] Yuanjia Ma. The optimization algorithm for blind processing of high frequency signal of capacitive sensor. Discrete and Continuous Dynamical Systems - S, 2019, 12 (4&5) : 1399-1412. doi: 10.3934/dcdss.2019096 [12] Tong Li, Sunčica Čanić. Critical thresholds in a quasilinear hyperbolic model of blood flow. Networks and Heterogeneous Media, 2009, 4 (3) : 527-536. doi: 10.3934/nhm.2009.4.527 [13] Chun Zong, Gen Qi Xu. Observability and controllability analysis of blood flow network. Mathematical Control and Related Fields, 2014, 4 (4) : 521-554. doi: 10.3934/mcrf.2014.4.521 [14] Jakub Kantner, Michal Beneš. Mathematical model of signal propagation in excitable media. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 935-951. doi: 10.3934/dcdss.2020382 [15] Avner Friedman, Wenrui Hao. Mathematical modeling of liver fibrosis. Mathematical Biosciences & Engineering, 2017, 14 (1) : 143-164. doi: 10.3934/mbe.2017010 [16] Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok. Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences & Engineering, 2012, 9 (1) : 199-214. doi: 10.3934/mbe.2012.9.199 [17] B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury. Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences & Engineering, 2006, 3 (2) : 371-383. doi: 10.3934/mbe.2006.3.371 [18] Tony Lyons. The 2-component dispersionless Burgers equation arising in the modelling of blood flow. Communications on Pure and Applied Analysis, 2012, 11 (4) : 1563-1576. doi: 10.3934/cpaa.2012.11.1563 [19] Alberto Zingaro, Ivan Fumagalli, Luca Dede, Marco Fedele, Pasquale C. Africa, Antonio F. Corno, Alfio Quarteroni. A geometric multiscale model for the numerical simulation of blood flow in the human left heart. Discrete and Continuous Dynamical Systems - S, 2022  doi: 10.3934/dcdss.2022052 [20] Aymen Alian, Yu-Lun Lo, Kirk Shelley, Hau-Tieng Wu. Reconsider phase reconstruction in signals with dynamic periodicity from the modern signal processing perspective. Foundations of Data Science, 2022  doi: 10.3934/fods.2022010

2018 Impact Factor: 1.313