-
Previous Article
Mathematical epidemiology of HIV/AIDS in cuba during the period 1986-2000
- MBE Home
- This Issue
-
Next Article
Global dynamics of a staged progression model for infectious diseases
Sensitivity and uncertainty analyses for a SARS model with time-varying inputs and outputs
1. | Department of Mathematics and Statistics, University of Winnipeg, Winnipeg, MB, Canada R3B 2E9, Canada |
2. | Department of Statistics, University of Manitoba, Winnipeg, MB, Canada R3T 2N2, Canada |
3. | Department of Mathematics, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada |
4. | Department of Mathematics, Malaspina University-College, Nanaimo, BC, Canada V9R 5S5, Canada |
[1] |
Mariantonia Cotronei, Tomas Sauer. Full rank filters and polynomial reproduction. Communications on Pure and Applied Analysis, 2007, 6 (3) : 667-687. doi: 10.3934/cpaa.2007.6.667 |
[2] |
Qiumei Zhang, Daqing Jiang, Li Zu. The stability of a perturbed eco-epidemiological model with Holling type II functional response by white noise. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 295-321. doi: 10.3934/dcdsb.2015.20.295 |
[3] |
Jérôme Coville. Nonlocal refuge model with a partial control. Discrete and Continuous Dynamical Systems, 2015, 35 (4) : 1421-1446. doi: 10.3934/dcds.2015.35.1421 |
[4] |
Tom Burr, Gerardo Chowell. The reproduction number $R_t$ in structured and nonstructured populations. Mathematical Biosciences & Engineering, 2009, 6 (2) : 239-259. doi: 10.3934/mbe.2009.6.239 |
[5] |
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 |
[6] |
Tianhui Yang, Lei Zhang. Remarks on basic reproduction ratios for periodic abstract functional differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6771-6782. doi: 10.3934/dcdsb.2019166 |
[7] |
E. González-Olivares, B. González-Yañez, Eduardo Sáez, I. Szántó. On the number of limit cycles in a predator prey model with non-monotonic functional response. Discrete and Continuous Dynamical Systems - B, 2006, 6 (3) : 525-534. doi: 10.3934/dcdsb.2006.6.525 |
[8] |
Sebastian Aniţa, Bedreddine Ainseba. Internal eradicability for an epidemiological model with diffusion. Mathematical Biosciences & Engineering, 2005, 2 (3) : 437-443. doi: 10.3934/mbe.2005.2.437 |
[9] |
Haiying Jing, Zhaoyu Yang. The impact of state feedback control on a predator-prey model with functional response. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 607-614. doi: 10.3934/dcdsb.2004.4.607 |
[10] |
Pei Zhang, Siyan Liu, Dan Lu, Ramanan Sankaran, Guannan Zhang. An out-of-distribution-aware autoencoder model for reduced chemical kinetics. Discrete and Continuous Dynamical Systems - S, 2022, 15 (4) : 913-930. doi: 10.3934/dcdss.2021138 |
[11] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[12] |
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457-470. doi: 10.3934/mbe.2007.4.457 |
[13] |
Ling Xue, Caterina Scoglio. Network-level reproduction number and extinction threshold for vector-borne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565-584. doi: 10.3934/mbe.2015.12.565 |
[14] |
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170 |
[15] |
Gergely Röst, Jianhong Wu. SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2008, 5 (2) : 389-402. doi: 10.3934/mbe.2008.5.389 |
[16] |
Jinliang Wang, Gang Huang, Yasuhiro Takeuchi, Shengqiang Liu. Sveir epidemiological model with varying infectivity and distributed delays. Mathematical Biosciences & Engineering, 2011, 8 (3) : 875-888. doi: 10.3934/mbe.2011.8.875 |
[17] |
Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051 |
[18] |
Lopo F. de Jesus, César M. Silva, Helder Vilarinho. Random perturbations of an eco-epidemiological model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 257-275. doi: 10.3934/dcdsb.2021040 |
[19] |
Wei Wang, Linyi Qian, Xiaonan Su. Pricing and hedging catastrophe equity put options under a Markov-modulated jump diffusion model. Journal of Industrial and Management Optimization, 2015, 11 (2) : 493-514. doi: 10.3934/jimo.2015.11.493 |
[20] |
Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure and Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]