-
Previous Article
Modeling shrimp biomass and viral infection for production of biological countermeasures
- MBE Home
- This Issue
-
Next Article
Lyapunov functions for tuberculosis models with fast and slow progression
Mathematical modeling of biowall reactors for in-situ groundwater treatment
1. | Department of Mathematics, William Paterson University, Wayne, NJ 07470, United States |
2. | Department of Mathematical Sciences, Montclair State University, Montclair, NJ 07043, United States |
[1] |
Emma Smith, Volker Rehbock, Norm Adams. Deterministic modeling of whole-body sheep metabolism. Journal of Industrial and Management Optimization, 2009, 5 (1) : 61-80. doi: 10.3934/jimo.2009.5.61 |
[2] |
Angelo Antoci, Marcello Galeotti, Mauro Sodini. Environmental degradation and indeterminacy of equilibrium selection. Discrete and Continuous Dynamical Systems - B, 2021, 26 (11) : 5755-5767. doi: 10.3934/dcdsb.2021179 |
[3] |
Yongzhi Xu. A free boundary problem model of ductal carcinoma in situ. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 337-348. doi: 10.3934/dcdsb.2004.4.337 |
[4] |
Messoud A. Efendiev, Sergey Zelik, Hermann J. Eberl. Existence and longtime behavior of a biofilm model. Communications on Pure and Applied Analysis, 2009, 8 (2) : 509-531. doi: 10.3934/cpaa.2009.8.509 |
[5] |
Brandon Lindley, Qi Wang, Tianyu Zhang. A multicomponent model for biofilm-drug interaction. Discrete and Continuous Dynamical Systems - B, 2011, 15 (2) : 417-456. doi: 10.3934/dcdsb.2011.15.417 |
[6] |
Hermann J. Eberl, Messoud A. Efendiev, Dariusz Wrzosek, Anna Zhigun. Analysis of a degenerate biofilm model with a nutrient taxis term. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 99-119. doi: 10.3934/dcds.2014.34.99 |
[7] |
Mudassar Imran, Hal L. Smith. A model of optimal dosing of antibiotic treatment in biofilm. Mathematical Biosciences & Engineering, 2014, 11 (3) : 547-571. doi: 10.3934/mbe.2014.11.547 |
[8] |
Fadoua El Moustaid, Amina Eladdadi, Lafras Uys. Modeling bacterial attachment to surfaces as an early stage of biofilm development. Mathematical Biosciences & Engineering, 2013, 10 (3) : 821-842. doi: 10.3934/mbe.2013.10.821 |
[9] |
Etsushi Nakaguchi, Koichi Osaki. Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2627-2646. doi: 10.3934/dcdsb.2013.18.2627 |
[10] |
Hanwu Liu, Lin Wang, Fengqin Zhang, Qiuying Li, Huakun Zhou. Analyzing the causes of alpine meadow degradation and the efficiency of restoration strategies through a mathematical modelling exercise. Mathematical Biosciences & Engineering, 2018, 15 (3) : 765-773. doi: 10.3934/mbe.2018034 |
[11] |
Jianing Xie. Blow-up prevention by quadratic degradation in a higher-dimensional chemotaxis-growth model with indirect attractant production. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 4007-4022. doi: 10.3934/dcdsb.2021216 |
[12] |
Hassan Khassehkhan, Messoud A. Efendiev, Hermann J. Eberl. A degenerate diffusion-reaction model of an amensalistic biofilm control system: Existence and simulation of solutions. Discrete and Continuous Dynamical Systems - B, 2009, 12 (2) : 371-388. doi: 10.3934/dcdsb.2009.12.371 |
[13] |
Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl. Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences & Engineering, 2017, 14 (3) : 625-653. doi: 10.3934/mbe.2017036 |
[14] |
Fazal Abbas, Rangarajan Sudarsan, Hermann J. Eberl. Longtime behavior of one-dimensional biofilm models with shear dependent detachment rates. Mathematical Biosciences & Engineering, 2012, 9 (2) : 215-239. doi: 10.3934/mbe.2012.9.215 |
[15] |
Nikodem J. Poplawski, Abbas Shirinifard, Maciej Swat, James A. Glazier. Simulation of single-species bacterial-biofilm growth using the Glazier-Graner-Hogeweg model and the CompuCell3D modeling environment. Mathematical Biosciences & Engineering, 2008, 5 (2) : 355-388. doi: 10.3934/mbe.2008.5.355 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]