-
Previous Article
On the stabilizing effect of cannibalism in stage-structured population models
- MBE Home
- This Issue
-
Next Article
Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow
Complex spatio-temporal features in meg data
1. | Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universita degli Studi di Catania, Viale A. Doria 6, 95125 Catania, Italy, Italy |
2. | Dipartimento di Ingegneria Elettrica, Elettronica e dei Sistemi, Universitá degli Studi di Catania, V.le A, Doria 6, 95125 Catania, Italy |
3. | Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi, Facoltà di Ingegneria, Università degli Studi di Catania, viale A. Doria 6, 95125 Catania, Italy, Italy |
4. | PST Group, Corporate R&D, STMicroelectronics, Catania site, Stradale Primosole 50, 95121 Catania |
5. | Institute for Nonlinear Science, University of California, San Diego, 9500 Gilman Dr., La Jolla, 92093-0402 CA, United States |
[1] |
Wenjing Liu, Rong Yang, Xin-Guang Yang. Dynamics of a 3D Brinkman-Forchheimer equation with infinite delay. Communications on Pure and Applied Analysis, 2021, 20 (5) : 1907-1930. doi: 10.3934/cpaa.2021052 |
[2] |
Mustapha Yebdri. Existence of $ \mathcal{D}- $pullback attractor for an infinite dimensional dynamical system. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 167-198. doi: 10.3934/dcdsb.2021036 |
[3] |
Roland Zweimüller. Asymptotic orbit complexity of infinite measure preserving transformations. Discrete and Continuous Dynamical Systems, 2006, 15 (1) : 353-366. doi: 10.3934/dcds.2006.15.353 |
[4] |
Marta Lewicka, Mohammadreza Raoofi. A stability result for the Stokes-Boussinesq equations in infinite 3d channels. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2615-2625. doi: 10.3934/cpaa.2013.12.2615 |
[5] |
Julia García-Luengo, Pedro Marín-Rubio, José Real. Regularity of pullback attractors and attraction in $H^1$ in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay. Discrete and Continuous Dynamical Systems, 2014, 34 (1) : 181-201. doi: 10.3934/dcds.2014.34.181 |
[6] |
J. Becker, M. Ferreira, B.M.P.M. Oliveira, A.A. Pinto. R&d dynamics. Conference Publications, 2013, 2013 (special) : 61-68. doi: 10.3934/proc.2013.2013.61 |
[7] |
María Isabel Cortez. $Z^d$ Toeplitz arrays. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 859-881. doi: 10.3934/dcds.2006.15.859 |
[8] |
Carolin Kreisbeck. A note on $3$d-$1$d dimension reduction with differential constraints. Discrete and Continuous Dynamical Systems - S, 2017, 10 (1) : 55-73. doi: 10.3934/dcdss.2017003 |
[9] |
Sebastián Donoso. Enveloping semigroups of systems of order d. Discrete and Continuous Dynamical Systems, 2014, 34 (7) : 2729-2740. doi: 10.3934/dcds.2014.34.2729 |
[10] |
Ted Greenwood. Superstar of the Sloan Minority Ph.D. Program. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1539-1540. doi: 10.3934/mbe.2013.10.1539 |
[11] |
Mark Pollicott. $\mathbb Z^d$-covers of horosphere foliations. Discrete and Continuous Dynamical Systems, 2000, 6 (1) : 147-154. doi: 10.3934/dcds.2000.6.147 |
[12] |
Yong Zhou. Remarks on regularities for the 3D MHD equations. Discrete and Continuous Dynamical Systems, 2005, 12 (5) : 881-886. doi: 10.3934/dcds.2005.12.881 |
[13] |
Tian Ma, Shouhong Wang. Global structure of 2-D incompressible flows. Discrete and Continuous Dynamical Systems, 2001, 7 (2) : 431-445. doi: 10.3934/dcds.2001.7.431 |
[14] |
Hyeong-Ohk Bae, Bum Ja Jin. Estimates of the wake for the 3D Oseen equations. Discrete and Continuous Dynamical Systems - B, 2008, 10 (1) : 1-18. doi: 10.3934/dcdsb.2008.10.1 |
[15] |
Gianluca Crippa, Elizaveta Semenova, Stefano Spirito. Strong continuity for the 2D Euler equations. Kinetic and Related Models, 2015, 8 (4) : 685-689. doi: 10.3934/krm.2015.8.685 |
[16] |
Yu. Dabaghian, R. V. Jensen, R. Blümel. Integrability in 1D quantum chaos. Conference Publications, 2003, 2003 (Special) : 206-212. doi: 10.3934/proc.2003.2003.206 |
[17] |
Bernd Kawohl, Guido Sweers. On a formula for sets of constant width in 2d. Communications on Pure and Applied Analysis, 2019, 18 (4) : 2117-2131. doi: 10.3934/cpaa.2019095 |
[18] |
Robert P. Gilbert, Philippe Guyenne, Ying Liu. Modeling of the kinetics of vitamin D$_3$ in osteoblastic cells. Mathematical Biosciences & Engineering, 2013, 10 (2) : 319-344. doi: 10.3934/mbe.2013.10.319 |
[19] |
Ka Kit Tung, Wendell Welch Orlando. On the differences between 2D and QG turbulence. Discrete and Continuous Dynamical Systems - B, 2003, 3 (2) : 145-162. doi: 10.3934/dcdsb.2003.3.145 |
[20] |
Julien Cividini. Pattern formation in 2D traffic flows. Discrete and Continuous Dynamical Systems - S, 2014, 7 (3) : 395-409. doi: 10.3934/dcdss.2014.7.395 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]