-
Previous Article
The stability of an SIR epidemic model with time delays
- MBE Home
- This Issue
-
Next Article
Weakly coupled traveling waves for a model of growth and competition in a flow reactor
Differential susceptibility and infectivity epidemic models
1. | Center for Nonlinear Studies (MS B284), Los Alamos National Laboratory, Los Alamos, NM 87545, United States |
2. | Department of Mathematical Sciences, University of Alabama in Huntsville, Huntsville, AL 35899, United States |
[1] |
Maoxing Liu, Yuming Chen. An SIRS model with differential susceptibility and infectivity on uncorrelated networks. Mathematical Biosciences & Engineering, 2015, 12 (3) : 415-429. doi: 10.3934/mbe.2015.12.415 |
[2] |
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 |
[3] |
James M. Hyman, Jia Li. Epidemic models with differential susceptibility and staged progression and their dynamics. Mathematical Biosciences & Engineering, 2009, 6 (2) : 321-332. doi: 10.3934/mbe.2009.6.321 |
[4] |
C. Connell McCluskey. Global stability for an SEIR epidemiological model with varying infectivity and infinite delay. Mathematical Biosciences & Engineering, 2009, 6 (3) : 603-610. doi: 10.3934/mbe.2009.6.603 |
[5] |
Mboya Ba, P. Tchinda Mouofo, Mountaga Lam, Jean-Jules Tewa. Optimal intervention strategies of a SI-HIV models with differential infectivity and time delays. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2293-2306. doi: 10.3934/dcdsb.2020035 |
[6] |
Pierre Magal. Global stability for differential equations with homogeneous nonlinearity and application to population dynamics. Discrete and Continuous Dynamical Systems - B, 2002, 2 (4) : 541-560. doi: 10.3934/dcdsb.2002.2.541 |
[7] |
Bao-Zhu Guo, Li-Ming Cai. A note for the global stability of a delay differential equation of hepatitis B virus infection. Mathematical Biosciences & Engineering, 2011, 8 (3) : 689-694. doi: 10.3934/mbe.2011.8.689 |
[8] |
Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727 |
[9] |
Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084 |
[10] |
Junya Nishiguchi. On parameter dependence of exponential stability of equilibrium solutions in differential equations with a single constant delay. Discrete and Continuous Dynamical Systems, 2016, 36 (10) : 5657-5679. doi: 10.3934/dcds.2016048 |
[11] |
Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure and Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719 |
[12] |
Andrey V. Melnik, Andrei Korobeinikov. Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility. Mathematical Biosciences & Engineering, 2013, 10 (2) : 369-378. doi: 10.3934/mbe.2013.10.369 |
[13] |
Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang. Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility. Discrete and Continuous Dynamical Systems - B, 2017, 22 (7) : 2795-2812. doi: 10.3934/dcdsb.2017151 |
[14] |
Ariel Cintrón-Arias, Carlos Castillo-Chávez, Luís M. A. Bettencourt, Alun L. Lloyd, H. T. Banks. The estimation of the effective reproductive number from disease outbreak data. Mathematical Biosciences & Engineering, 2009, 6 (2) : 261-282. doi: 10.3934/mbe.2009.6.261 |
[15] |
Cuilian You, Yangyang Hao. Stability in mean for fuzzy differential equation. Journal of Industrial and Management Optimization, 2019, 15 (3) : 1375-1385. doi: 10.3934/jimo.2018099 |
[16] |
Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations and Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493 |
[17] |
Tarik Mohammed Touaoula. Global stability for a class of functional differential equations (Application to Nicholson's blowflies and Mackey-Glass models). Discrete and Continuous Dynamical Systems, 2018, 38 (9) : 4391-4419. doi: 10.3934/dcds.2018191 |
[18] |
Armengol Gasull, Hector Giacomini. Upper bounds for the number of limit cycles of some planar polynomial differential systems. Discrete and Continuous Dynamical Systems, 2010, 27 (1) : 217-229. doi: 10.3934/dcds.2010.27.217 |
[19] |
Shimin Li, Jaume Llibre. On the limit cycles of planar discontinuous piecewise linear differential systems with a unique equilibrium. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 5885-5901. doi: 10.3934/dcdsb.2019111 |
[20] |
Jean-Baptiste Burie, Ramsès Djidjou-Demasse, Arnaud Ducrot. Slow convergence to equilibrium for an evolutionary epidemiology integro-differential system. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2223-2243. doi: 10.3934/dcdsb.2019225 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]