-
Previous Article
Modelling periodic oscillations during somitogenesis
- MBE Home
- This Issue
-
Next Article
A model of activity-dependent changes in dendritic spine density and spine structure
Optimal control on hybrid ODE Systems with application to a tick disease model
1. | Department of Mathematics, University of Tennessee, 1403 Circle Drive, Knoxville, TN 37996-1300, United States |
[1] |
Ping Lin, Weihan Wang. Optimal control problems for some ordinary differential equations with behavior of blowup or quenching. Mathematical Control and Related Fields, 2018, 8 (3&4) : 809-828. doi: 10.3934/mcrf.2018036 |
[2] |
Lukáš Adam, Jiří Outrata. On optimal control of a sweeping process coupled with an ordinary differential equation. Discrete and Continuous Dynamical Systems - B, 2014, 19 (9) : 2709-2738. doi: 10.3934/dcdsb.2014.19.2709 |
[3] |
Hongwei Lou, Weihan Wang. Optimal blowup/quenching time for controlled autonomous ordinary differential equations. Mathematical Control and Related Fields, 2015, 5 (3) : 517-527. doi: 10.3934/mcrf.2015.5.517 |
[4] |
Zhenyu Lu, Junhao Hu, Xuerong Mao. Stabilisation by delay feedback control for highly nonlinear hybrid stochastic differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4099-4116. doi: 10.3934/dcdsb.2019052 |
[5] |
Wei Mao, Yanan Jiang, Liangjian Hu, Xuerong Mao. Stabilization by intermittent control for hybrid stochastic differential delay equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 569-581. doi: 10.3934/dcdsb.2021055 |
[6] |
Sébastien Court, Karl Kunisch, Laurent Pfeiffer. Hybrid optimal control problems for a class of semilinear parabolic equations. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1031-1060. doi: 10.3934/dcdss.2018060 |
[7] |
Jan-Hendrik Webert, Philip E. Gill, Sven-Joachim Kimmerle, Matthias Gerdts. A study of structure-exploiting SQP algorithms for an optimal control problem with coupled hyperbolic and ordinary differential equation constraints. Discrete and Continuous Dynamical Systems - S, 2018, 11 (6) : 1259-1282. doi: 10.3934/dcdss.2018071 |
[8] |
Yuriy Golovaty, Anna Marciniak-Czochra, Mariya Ptashnyk. Stability of nonconstant stationary solutions in a reaction-diffusion equation coupled to the system of ordinary differential equations. Communications on Pure and Applied Analysis, 2012, 11 (1) : 229-241. doi: 10.3934/cpaa.2012.11.229 |
[9] |
Nguyen Thi Hoai. Asymptotic approximation to a solution of a singularly perturbed linear-quadratic optimal control problem with second-order linear ordinary differential equation of state variable. Numerical Algebra, Control and Optimization, 2021, 11 (4) : 495-512. doi: 10.3934/naco.2020040 |
[10] |
Bernard Dacorogna, Alessandro Ferriero. Regularity and selecting principles for implicit ordinary differential equations. Discrete and Continuous Dynamical Systems - B, 2009, 11 (1) : 87-101. doi: 10.3934/dcdsb.2009.11.87 |
[11] |
Zvi Artstein. Averaging of ordinary differential equations with slowly varying averages. Discrete and Continuous Dynamical Systems - B, 2010, 14 (2) : 353-365. doi: 10.3934/dcdsb.2010.14.353 |
[12] |
Yong Ren, Qi Zhang. Stabilization for hybrid stochastic differential equations driven by Lévy noise via periodically intermittent control. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3811-3829. doi: 10.3934/dcdsb.2021207 |
[13] |
Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations and Control Theory, 2022, 11 (1) : 177-197. doi: 10.3934/eect.2020107 |
[14] |
Ștefana-Lucia Aniţa. Optimal control for stochastic differential equations and related Kolmogorov equations. Evolution Equations and Control Theory, 2022 doi: 10.3934/eect.2022023 |
[15] |
Tomasz Kapela, Piotr Zgliczyński. A Lohner-type algorithm for control systems and ordinary differential inclusions. Discrete and Continuous Dynamical Systems - B, 2009, 11 (2) : 365-385. doi: 10.3934/dcdsb.2009.11.365 |
[16] |
Holly Gaff. Preliminary analysis of an agent-based model for a tick-borne disease. Mathematical Biosciences & Engineering, 2011, 8 (2) : 463-473. doi: 10.3934/mbe.2011.8.463 |
[17] |
Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 |
[18] |
Serge Nicaise. Stability and asymptotic properties of dissipative evolution equations coupled with ordinary differential equations. Mathematical Control and Related Fields, 2021 doi: 10.3934/mcrf.2021057 |
[19] |
Yuyun Zhao, Yi Zhang, Tao Xu, Ling Bai, Qian Zhang. pth moment exponential stability of hybrid stochastic functional differential equations by feedback control based on discrete-time state observations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 209-226. doi: 10.3934/dcdsb.2017011 |
[20] |
Djamila Moulay, M. A. Aziz-Alaoui, Hee-Dae Kwon. Optimal control of chikungunya disease: Larvae reduction, treatment and prevention. Mathematical Biosciences & Engineering, 2012, 9 (2) : 369-392. doi: 10.3934/mbe.2012.9.369 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]