-
Previous Article
Permanence for two-species Lotka-Volterra cooperative systems with delays
- MBE Home
- This Issue
-
Next Article
Existence of multiple-stable equilibria for a multi-drug-resistant model of mycobacterium tuberculosis
Mathematical analysis of a HIV model with frequency dependence and viral diversity
1. | Graduate School of Science and Technology, Shizuoka University, 3-5-1 Johoku Naka-ku Hamamatsu 432-8561, Japan |
2. | Aihara Complexity Modelling Project, ERATO, JST, The Tokyou University, 4-6-1 Komaba Meguro-ku Tokyo 153-8505, Japan |
3. | Department of Systems Engineering, Faculty of Engineering, Shizuoka University, Hamamatsu 432-8561 |
[1] |
Yu Ji. Global stability of a multiple delayed viral infection model with general incidence rate and an application to HIV infection. Mathematical Biosciences & Engineering, 2015, 12 (3) : 525-536. doi: 10.3934/mbe.2015.12.525 |
[2] |
Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545 |
[3] |
Stephen Pankavich, Deborah Shutt. An in-host model of HIV incorporating latent infection and viral mutation. Conference Publications, 2015, 2015 (special) : 913-922. doi: 10.3934/proc.2015.0913 |
[4] |
Claude-Michel Brauner, Xinyue Fan, Luca Lorenzi. Two-dimensional stability analysis in a HIV model with quadratic logistic growth term. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1813-1844. doi: 10.3934/cpaa.2013.12.1813 |
[5] |
A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3541-3556. doi: 10.3934/dcdss.2020441 |
[6] |
Stephen Pankavich, Christian Parkinson. Mathematical analysis of an in-host model of viral dynamics with spatial heterogeneity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1237-1257. doi: 10.3934/dcdsb.2016.21.1237 |
[7] |
H. T. Banks, Robert Baraldi, Karissa Cross, Kevin Flores, Christina McChesney, Laura Poag, Emma Thorpe. Uncertainty quantification in modeling HIV viral mechanics. Mathematical Biosciences & Engineering, 2015, 12 (5) : 937-964. doi: 10.3934/mbe.2015.12.937 |
[8] |
Patrick W. Nelson, Michael A. Gilchrist, Daniel Coombs, James M. Hyman, Alan S. Perelson. An Age-Structured Model of HIV Infection that Allows for Variations in the Production Rate of Viral Particles and the Death Rate of Productively Infected Cells. Mathematical Biosciences & Engineering, 2004, 1 (2) : 267-288. doi: 10.3934/mbe.2004.1.267 |
[9] |
Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333 |
[10] |
Xinyue Fan, Claude-Michel Brauner, Linda Wittkop. Mathematical analysis of a HIV model with quadratic logistic growth term. Discrete and Continuous Dynamical Systems - B, 2012, 17 (7) : 2359-2385. doi: 10.3934/dcdsb.2012.17.2359 |
[11] |
Tyson Loudon, Stephen Pankavich. Mathematical analysis and dynamic active subspaces for a long term model of HIV. Mathematical Biosciences & Engineering, 2017, 14 (3) : 709-733. doi: 10.3934/mbe.2017040 |
[12] |
Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026 |
[13] |
Yuan Yuan, Xianlong Fu. Mathematical analysis of an age-structured HIV model with intracellular delay. Discrete and Continuous Dynamical Systems - B, 2022, 27 (4) : 2077-2106. doi: 10.3934/dcdsb.2021123 |
[14] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[15] |
Cristiana J. Silva. Stability and optimal control of a delayed HIV/AIDS-PrEP model. Discrete and Continuous Dynamical Systems - S, 2022, 15 (3) : 639-654. doi: 10.3934/dcdss.2021156 |
[16] |
Zhixing Hu, Weijuan Pang, Fucheng Liao, Wanbiao Ma. Analysis of a CD4$^+$ T cell viral infection model with a class of saturated infection rate. Discrete and Continuous Dynamical Systems - B, 2014, 19 (3) : 735-745. doi: 10.3934/dcdsb.2014.19.735 |
[17] |
Alexander Rezounenko. Stability of a viral infection model with state-dependent delay, CTL and antibody immune responses. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1547-1563. doi: 10.3934/dcdsb.2017074 |
[18] |
Hongying Shu, Lin Wang. Global stability and backward bifurcation of a general viral infection model with virus-driven proliferation of target cells. Discrete and Continuous Dynamical Systems - B, 2014, 19 (6) : 1749-1768. doi: 10.3934/dcdsb.2014.19.1749 |
[19] |
Alexander Rezounenko. Viral infection model with diffusion and state-dependent delay: Stability of classical solutions. Discrete and Continuous Dynamical Systems - B, 2018, 23 (3) : 1091-1105. doi: 10.3934/dcdsb.2018143 |
[20] |
Yu Ji, Lan Liu. Global stability of a delayed viral infection model with nonlinear immune response and general incidence rate. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 133-149. doi: 10.3934/dcdsb.2016.21.133 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]