2008, 5(4): 757-770. doi: 10.3934/mbe.2008.5.757

Modeling the effect of information campaigns on the HIV epidemic in Uganda


Department of Mathematics & Computer Science, Xavier University, Cincinnati, OH 45207-4441, United States


Department of Mathematics, University of Tennessee, Knoxville, TN 37996-1300


Department of Information Studies, University of Sheffield, Sheffield S1 4DP, United Kingdom


Product Safety Commission, 4330 East West Highway, Bethesda, MD 20814, United States

Received  December 2007 Revised  May 2008 Published  October 2008

The increasing prevalence of HIV/AIDS in Africa over the past twenty-five years continues to erode the continent's health care and overall welfare. There have been various responses to the pandemic, led by Uganda, which has had the greatest success in combating the disease. Part of Uganda's success has been attributed to a formalized information, education, and communication (IEC) strategy, lowering estimated HIV/AIDS infection rates from 18.5% in 1995 to 4.1% in 2003. We formulate a model to investigate the effects of information and education campaigns on the HIV epidemic in Uganda. These campaigns affect people's behavior and can divide the susceptibles class into subclasses with different infectivity rates. Our model is a system of ordinary differential equations and we use data about the epidemics and the number of organizations involved in the campaigns to estimate the model parameters. We compare our model with three types of susceptibles to a standard SIR model.
Citation: Hem Joshi, Suzanne Lenhart, Kendra Albright, Kevin Gipson. Modeling the effect of information campaigns on the HIV epidemic in Uganda. Mathematical Biosciences & Engineering, 2008, 5 (4) : 757-770. doi: 10.3934/mbe.2008.5.757

Sanjukta Hota, Folashade Agusto, Hem Raj Joshi, Suzanne Lenhart. Optimal control and stability analysis of an epidemic model with education campaign and treatment. Conference Publications, 2015, 2015 (special) : 621-634. doi: 10.3934/proc.2015.0621


Songbai Guo, Wanbiao Ma. Global behavior of delay differential equations model of HIV infection with apoptosis. Discrete and Continuous Dynamical Systems - B, 2016, 21 (1) : 103-119. doi: 10.3934/dcdsb.2016.21.103


Federico Papa, Francesca Binda, Giovanni Felici, Marco Franzetti, Alberto Gandolfi, Carmela Sinisgalli, Claudia Balotta. A simple model of HIV epidemic in Italy: The role of the antiretroviral treatment. Mathematical Biosciences & Engineering, 2018, 15 (1) : 181-207. doi: 10.3934/mbe.2018008


Jeff Musgrave, James Watmough. Examination of a simple model of condom usage and individual withdrawal for the HIV epidemic. Mathematical Biosciences & Engineering, 2009, 6 (2) : 363-376. doi: 10.3934/mbe.2009.6.363


Hongyong Zhao, Peng Wu, Shigui Ruan. Dynamic analysis and optimal control of a three-age-class HIV/AIDS epidemic model in China. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3491-3521. doi: 10.3934/dcdsb.2020070


Changyan Di, Qingguo Zhou, Jun Shen, Li Li, Rui Zhou, Jiayin Lin. Innovation event model for STEM education: A constructivism perspective. STEM Education, 2021, 1 (1) : 60-74. doi: 10.3934/steme.2021005


Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete and Continuous Dynamical Systems - B, 2021, 26 (9) : 4887-4905. doi: 10.3934/dcdsb.2020317


Urszula Foryś, Jan Poleszczuk. A delay-differential equation model of HIV related cancer--immune system dynamics. Mathematical Biosciences & Engineering, 2011, 8 (2) : 627-641. doi: 10.3934/mbe.2011.8.627


Esther Chigidi, Edward M. Lungu. HIV model incorporating differential progression for treatment-naive and treatment-experienced infectives. Mathematical Biosciences & Engineering, 2009, 6 (3) : 427-450. doi: 10.3934/mbe.2009.6.427


Christopher M. Kribs-Zaleta, Melanie Lee, Christine Román, Shari Wiley, Carlos M. Hernández-Suárez. The Effect of the HIV/AIDS Epidemic on Africa's Truck Drivers. Mathematical Biosciences & Engineering, 2005, 2 (4) : 771-788. doi: 10.3934/mbe.2005.2.771


Filipe Rodrigues, Cristiana J. Silva, Delfim F. M. Torres, Helmut Maurer. Optimal control of a delayed HIV model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (1) : 443-458. doi: 10.3934/dcdsb.2018030


James M. Hyman, Jia Li. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 89-100. doi: 10.3934/mbe.2006.3.89


Simone Göttlich, Camill Harter. A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11 (3) : 447-469. doi: 10.3934/nhm.2016004


Xiao-Qiang Zhao, Wendi Wang. Fisher waves in an epidemic model. Discrete and Continuous Dynamical Systems - B, 2004, 4 (4) : 1117-1128. doi: 10.3934/dcdsb.2004.4.1117


Sümeyra Uçar. Existence and uniqueness results for a smoking model with determination and education in the frame of non-singular derivatives. Discrete and Continuous Dynamical Systems - S, 2021, 14 (7) : 2571-2589. doi: 10.3934/dcdss.2020178


Helen Moore, Weiqing Gu. A mathematical model for treatment-resistant mutations of HIV. Mathematical Biosciences & Engineering, 2005, 2 (2) : 363-380. doi: 10.3934/mbe.2005.2.363


Nara Bobko, Jorge P. Zubelli. A singularly perturbed HIV model with treatment and antigenic variation. Mathematical Biosciences & Engineering, 2015, 12 (1) : 1-21. doi: 10.3934/mbe.2015.12.1


H. Thomas Banks, Shuhua Hu, Zackary R. Kenz, Hien T. Tran. A comparison of nonlinear filtering approaches in the context of an HIV model. Mathematical Biosciences & Engineering, 2010, 7 (2) : 213-236. doi: 10.3934/mbe.2010.7.213


Claude-Michel Brauner, Danaelle Jolly, Luca Lorenzi, Rodolphe Thiebaut. Heterogeneous viral environment in a HIV spatial model. Discrete and Continuous Dynamical Systems - B, 2011, 15 (3) : 545-572. doi: 10.3934/dcdsb.2011.15.545


Shohel Ahmed, Abdul Alim, Sumaiya Rahman. A controlled treatment strategy applied to HIV immunology model. Numerical Algebra, Control and Optimization, 2018, 8 (3) : 299-314. doi: 10.3934/naco.2018019

2018 Impact Factor: 1.313


  • PDF downloads (144)
  • HTML views (0)
  • Cited by (32)

[Back to Top]