# American Institute of Mathematical Sciences

2009, 6(1): 135-143. doi: 10.3934/mbe.2009.6.135

## Modeling HIV outbreaks: The male to female prevalence ratio in the core population

 1 Department of Mathematics, Richard Stockton College of New Jersey, Pomona, NJ 08240, United States 2 Departments of Mathematics & Physics, University of Maryland, College Park, MD 20742, United States

Received  October 2007 Revised  September 2008 Published  December 2008

What affects the ratio of infected men to infected women in the core population in a heterosexual HIV epidemic? Hethcote & Yorke [5] introduced the term "core" initially to loosely describe the collection of individuals having the most unprotected sex partners. We study the early epidemic during the exponential growth phase and focus on the core group because most infected people were infected by people in the core. We argue that in the early outbreak phase of an epidemic, there is an identity, which we call the "outbreak equation." It relates three ratios that describe the core men versus the core women, namely, the ratio $E$ of numbers of all core men to all core women, the ratio $C$ of numbers of infected core men to core women, and the ratio $M$ of the infectiousness of a typical core man to that of a typical core woman. Then the relationship between the ratios is $E=MC^2$ in the early outbreak phase. We investigate two very different scenarios, one in which there are two times as many core men as core women ($E=2$) and the other in which core men equal core women ($E=1$). In the first case, the HIV epidemic grows at a much faster rate. We conclude that if the female core group was larger, that is, if more women in the total population were promiscuous (or if fewer men were promiscuous) then the HIV epidemic would grow more slowly.
Citation: Brandy Rapatski, James Yorke. Modeling HIV outbreaks: The male to female prevalence ratio in the core population. Mathematical Biosciences & Engineering, 2009, 6 (1) : 135-143. doi: 10.3934/mbe.2009.6.135
 [1] Luis F. Gordillo, Stephen A. Marion, Priscilla E. Greenwood. The effect of patterns of infectiousness on epidemic size. Mathematical Biosciences & Engineering, 2008, 5 (3) : 429-435. doi: 10.3934/mbe.2008.5.429 [2] Shunxiang Huang, Lin Wu, Jing Li, Ming-Zhen Xin, Yingying Wang, Xingjie Hao, Zhongyi Wang, Qihong Deng, Bin-Guo Wang. Transmission dynamics and high infectiousness of Coronavirus Disease 2019. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2021155 [3] A. K. Misra, Gauri Agrawal, Kusum Lata. Modeling the influence of human population and human population augmented pollution on rainfall. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 2979-3003. doi: 10.3934/dcdsb.2021169 [4] Bertrand Lods. Variational characterizations of the effective multiplication factor of a nuclear reactor core. Kinetic and Related Models, 2009, 2 (2) : 307-331. doi: 10.3934/krm.2009.2.307 [5] Chunlai Mu, Jun Zhou, Yuhuan Li. Fast rate of dead core for fast diffusion equation with strong absorption. Communications on Pure and Applied Analysis, 2010, 9 (2) : 397-411. doi: 10.3934/cpaa.2010.9.397 [6] Song Liang, Yuan Lou. On the dependence of population size upon random dispersal rate. Discrete and Continuous Dynamical Systems - B, 2012, 17 (8) : 2771-2788. doi: 10.3934/dcdsb.2012.17.2771 [7] Marius Cocou. A dynamic viscoelastic problem with friction and rate-depending contact interactions. Evolution Equations and Control Theory, 2020, 9 (4) : 981-993. doi: 10.3934/eect.2020060 [8] Cruz Vargas-De-León, Alberto d'Onofrio. Global stability of infectious disease models with contact rate as a function of prevalence index. Mathematical Biosciences & Engineering, 2017, 14 (4) : 1019-1033. doi: 10.3934/mbe.2017053 [9] Zhilei Liang. Convergence rate of solutions to the contact discontinuity for the compressible Navier-Stokes equations. Communications on Pure and Applied Analysis, 2013, 12 (5) : 1907-1926. doi: 10.3934/cpaa.2013.12.1907 [10] Najat Ziyadi. A male-female mathematical model of human papillomavirus (HPV) in African American population. Mathematical Biosciences & Engineering, 2017, 14 (1) : 339-358. doi: 10.3934/mbe.2017022 [11] Z. Jackiewicz, B. Zubik-Kowal, B. Basse. Finite-difference and pseudo-spectral methods for the numerical simulations of in vitro human tumor cell population kinetics. Mathematical Biosciences & Engineering, 2009, 6 (3) : 561-572. doi: 10.3934/mbe.2009.6.561 [12] Tzy-Wei Hwang, Feng-Bin Wang. Dynamics of a dengue fever transmission model with crowding effect in human population and spatial variation. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 147-161. doi: 10.3934/dcdsb.2013.18.147 [13] Zhaohui Yuan, Xingfu Zou. Global threshold dynamics in an HIV virus model with nonlinear infection rate and distributed invasion and production delays. Mathematical Biosciences & Engineering, 2013, 10 (2) : 483-498. doi: 10.3934/mbe.2013.10.483 [14] Suqi Ma, Qishao Lu, Shuli Mei. Dynamics of a logistic population model with maturation delay and nonlinear birth rate. Discrete and Continuous Dynamical Systems - B, 2005, 5 (3) : 735-752. doi: 10.3934/dcdsb.2005.5.735 [15] Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233 [16] Xun-Yang Wang, Khalid Hattaf, Hai-Feng Huo, Hong Xiang. Stability analysis of a delayed social epidemics model with general contact rate and its optimal control. Journal of Industrial and Management Optimization, 2016, 12 (4) : 1267-1285. doi: 10.3934/jimo.2016.12.1267 [17] Islam A. Moneim, David Greenhalgh. Use Of A Periodic Vaccination Strategy To Control The Spread Of Epidemics With Seasonally Varying Contact Rate. Mathematical Biosciences & Engineering, 2005, 2 (3) : 591-611. doi: 10.3934/mbe.2005.2.591 [18] Xing Liang, Lei Zhang. The optimal distribution of resources and rate of migration maximizing the population size in logistic model with identical migration. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 2055-2065. doi: 10.3934/dcdsb.2020280 [19] Manoj Kumar, Syed Abbas. Diffusive size-structured population model with time-varying diffusion rate. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2022128 [20] Caiping Liu, Heungwing Lee. Lagrange multiplier rules for approximate solutions in vector optimization. Journal of Industrial and Management Optimization, 2012, 8 (3) : 749-764. doi: 10.3934/jimo.2012.8.749

2018 Impact Factor: 1.313