
Previous Article
The estimation of the effective reproductive number from disease outbreak data
 MBE Home
 This Issue

Next Article
Mathematical modelling of tuberculosis epidemics
The reproduction number $R_t$ in structured and nonstructured populations
1.  Statistical Sciences Group, Los Alamos National Laboratory, Los Alamos, NM 87545, United States 
2.  School of Human Evolution and Social Change, Arizona State University, Box 872402, Tempe, AZ 85287, United States 
[1] 
Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems  B, 2013, 18 (1) : 3756. doi: 10.3934/dcdsb.2013.18.37 
[2] 
Attila Dénes, Gergely Röst. Single species population dynamics in seasonal environment with short reproduction period. Communications on Pure and Applied Analysis, 2021, 20 (2) : 755762. doi: 10.3934/cpaa.2020288 
[3] 
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595607. doi: 10.3934/mbe.2007.4.595 
[4] 
Gerardo Chowell, Catherine E. Ammon, Nicolas W. Hengartner, James M. Hyman. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences & Engineering, 2007, 4 (3) : 457470. doi: 10.3934/mbe.2007.4.457 
[5] 
Ling Xue, Caterina Scoglio. Networklevel reproduction number and extinction threshold for vectorborne diseases. Mathematical Biosciences & Engineering, 2015, 12 (3) : 565584. doi: 10.3934/mbe.2015.12.565 
[6] 
Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID19: A case study of India, Brazil and Peru. Communications on Pure and Applied Analysis, , () : . doi: 10.3934/cpaa.2021170 
[7] 
Fred Brauer. A model for an SI disease in an age  structured population. Discrete and Continuous Dynamical Systems  B, 2002, 2 (2) : 257264. doi: 10.3934/dcdsb.2002.2.257 
[8] 
Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311335. doi: 10.3934/mbe.2015.12.311 
[9] 
Jacek Banasiak, Wilson Lamb. Coagulation, fragmentation and growth processes in a size structured population. Discrete and Continuous Dynamical Systems  B, 2009, 11 (3) : 563585. doi: 10.3934/dcdsb.2009.11.563 
[10] 
G. Buffoni, S. Pasquali, G. Gilioli. A stochastic model for the dynamics of a stage structured population. Discrete and Continuous Dynamical Systems  B, 2004, 4 (3) : 517525. doi: 10.3934/dcdsb.2004.4.517 
[11] 
Ricardo Borges, Àngel Calsina, Sílvia Cuadrado. Equilibria of a cyclin structured cell population model. Discrete and Continuous Dynamical Systems  B, 2009, 11 (3) : 613627. doi: 10.3934/dcdsb.2009.11.613 
[12] 
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 14551474. doi: 10.3934/mbe.2013.10.1455 
[13] 
Shangzhi Li, Shangjiang Guo. Dynamics of a stagestructured population model with a statedependent delay. Discrete and Continuous Dynamical Systems  B, 2020, 25 (9) : 35233551. doi: 10.3934/dcdsb.2020071 
[14] 
Dongxue Yan, Xianlong Fu. Asymptotic behavior of a hierarchical sizestructured population model. Evolution Equations and Control Theory, 2018, 7 (2) : 293316. doi: 10.3934/eect.2018015 
[15] 
Xianlong Fu, Dongmei Zhu. Stability analysis for a sizestructured juvenileadult population model. Discrete and Continuous Dynamical Systems  B, 2014, 19 (2) : 391417. doi: 10.3934/dcdsb.2014.19.391 
[16] 
Zhihua Liu, Hui Tang, Pierre Magal. Hopf bifurcation for a spatially and age structured population dynamics model. Discrete and Continuous Dynamical Systems  B, 2015, 20 (6) : 17351757. doi: 10.3934/dcdsb.2015.20.1735 
[17] 
Bruno Buonomo, Deborah Lacitignola. On the stabilizing effect of cannibalism in stagestructured population models. Mathematical Biosciences & Engineering, 2006, 3 (4) : 717731. doi: 10.3934/mbe.2006.3.717 
[18] 
Jacques Henry. For which objective is birth process an optimal feedback in age structured population dynamics?. Discrete and Continuous Dynamical Systems  B, 2007, 8 (1) : 107114. doi: 10.3934/dcdsb.2007.8.107 
[19] 
Linlin Li, Bedreddine Ainseba. Largetime behavior of matured population in an agestructured model. Discrete and Continuous Dynamical Systems  B, 2021, 26 (5) : 25612580. doi: 10.3934/dcdsb.2020195 
[20] 
L. M. Abia, O. Angulo, J.C. LópezMarcos. Sizestructured population dynamics models and their numerical solutions. Discrete and Continuous Dynamical Systems  B, 2004, 4 (4) : 12031222. doi: 10.3934/dcdsb.2004.4.1203 
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]