• Previous Article
    Epidemic models with differential susceptibility and staged progression and their dynamics
  • MBE Home
  • This Issue
  • Next Article
    The dynamics of a delay model of hepatitis B virus infection with logistic hepatocyte growth
2009, 6(2): 301-319. doi: 10.3934/mbe.2009.6.301

Culling structured hosts to eradicate vector-borne diseases

1. 

Department of Applied Mathematics, Xi’an Jiaotong University, Xi’an, 710049, China

2. 

Department of Mathematics, Shandong Normal University, Jinan, 250014, China

3. 

Center for Disease Modeling, York University, Toronto, Ontario, M3J 1P3, Canada

Received  February 2007 Revised  September 2008 Published  March 2009

A compartmental model is developed, in the form of a nonautonomous system of delay differential equations subject to impulses at specific times, for mosquito-born disease control involving larvicides and insecticide sprays. Sufficient conditions in terms of the frequencies and rates of larvicides and insecticide sprays are derived, and numerical simulations are provided to illustrate the sharpness of these disease eradication conditions.
Citation: Xinli Hu, Yansheng Liu, Jianhong Wu. Culling structured hosts to eradicate vector-borne diseases. Mathematical Biosciences & Engineering, 2009, 6 (2) : 301-319. doi: 10.3934/mbe.2009.6.301
[1]

Yaxin Han, Zhenguo Bai. Threshold dynamics of a West Nile virus model with impulsive culling and incubation period. Discrete and Continuous Dynamical Systems - B, 2022, 27 (8) : 4515-4529. doi: 10.3934/dcdsb.2021239

[2]

Louis D. Bergsman, James M. Hyman, Carrie A. Manore. A mathematical model for the spread of west nile virus in migratory and resident birds. Mathematical Biosciences & Engineering, 2016, 13 (2) : 401-424. doi: 10.3934/mbe.2015009

[3]

Rongsong Liu, Jiangping Shuai, Jianhong Wu, Huaiping Zhu. Modeling spatial spread of west nile virus and impact of directional dispersal of birds. Mathematical Biosciences & Engineering, 2006, 3 (1) : 145-160. doi: 10.3934/mbe.2006.3.145

[4]

Abdelrazig K. Tarboush, Jing Ge, Zhigui Lin. Coexistence of a cross-diffusive West Nile virus model in a heterogenous environment. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1479-1494. doi: 10.3934/mbe.2018068

[5]

Jing Chen, Jicai Huang, John C. Beier, Robert Stephen Cantrell, Chris Cosner, Douglas O. Fuller, Guoyan Zhang, Shigui Ruan. Modeling and control of local outbreaks of West Nile virus in the United States. Discrete and Continuous Dynamical Systems - B, 2016, 21 (8) : 2423-2449. doi: 10.3934/dcdsb.2016054

[6]

Fred Brauer. A model for an SI disease in an age - structured population. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257

[7]

Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010

[8]

Sebastian Aniţa, Vincenzo Capasso, Ana-Maria Moşneagu. Global eradication for spatially structured populations by regional control. Discrete and Continuous Dynamical Systems - B, 2019, 24 (6) : 2511-2533. doi: 10.3934/dcdsb.2018263

[9]

Shangzhi Li, Shangjiang Guo. Dynamics of a stage-structured population model with a state-dependent delay. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3523-3551. doi: 10.3934/dcdsb.2020071

[10]

Mugen Huang, Moxun Tang, Jianshe Yu, Bo Zheng. A stage structured model of delay differential equations for Aedes mosquito population suppression. Discrete and Continuous Dynamical Systems, 2020, 40 (6) : 3467-3484. doi: 10.3934/dcds.2020042

[11]

Wendi Wang. Population dispersal and disease spread. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 797-804. doi: 10.3934/dcdsb.2004.4.797

[12]

Tsanou Berge, Samuel Bowong, Jean Lubuma, Martin Luther Mann Manyombe. Modeling Ebola Virus Disease transmissions with reservoir in a complex virus life ecology. Mathematical Biosciences & Engineering, 2018, 15 (1) : 21-56. doi: 10.3934/mbe.2018002

[13]

Thazin Aye, Guanyu Shang, Ying Su. On a stage-structured population model in discrete periodic habitat: III. unimodal growth and delay effect. Discrete and Continuous Dynamical Systems - B, 2021, 26 (4) : 1763-1781. doi: 10.3934/dcdsb.2021005

[14]

Peter J. Witbooi, Grant E. Muller, Marshall B. Ongansie, Ibrahim H. I. Ahmed, Kazeem O. Okosun. A stochastic population model of cholera disease. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 441-456. doi: 10.3934/dcdss.2021116

[15]

Yun Tian, Yu Bai, Pei Yu. Impact of delay on HIV-1 dynamics of fighting a virus with another virus. Mathematical Biosciences & Engineering, 2014, 11 (5) : 1181-1198. doi: 10.3934/mbe.2014.11.1181

[16]

Mary P. Hebert, Linda J. S. Allen. Disease outbreaks in plant-vector-virus models with vector aggregation and dispersal. Discrete and Continuous Dynamical Systems - B, 2016, 21 (7) : 2169-2191. doi: 10.3934/dcdsb.2016042

[17]

Cameron Browne. Immune response in virus model structured by cell infection-age. Mathematical Biosciences & Engineering, 2016, 13 (5) : 887-909. doi: 10.3934/mbe.2016022

[18]

Cameron J. Browne, Sergei S. Pilyugin. Global analysis of age-structured within-host virus model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (8) : 1999-2017. doi: 10.3934/dcdsb.2013.18.1999

[19]

Hossein Mohebbi, Azim Aminataei, Cameron J. Browne, Mohammad Reza Razvan. Hopf bifurcation of an age-structured virus infection model. Discrete and Continuous Dynamical Systems - B, 2018, 23 (2) : 861-885. doi: 10.3934/dcdsb.2018046

[20]

Rinaldo M. Colombo, Mauro Garavello. Stability and optimization in structured population models on graphs. Mathematical Biosciences & Engineering, 2015, 12 (2) : 311-335. doi: 10.3934/mbe.2015.12.311

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (48)
  • HTML views (0)
  • Cited by (4)

Other articles
by authors

[Back to Top]