# American Institute of Mathematical Sciences

2009, 6(3): 509-520. doi: 10.3934/mbe.2009.6.509

## Applications of occupancy urn models to epidemiology

 1 Facultad de Ciencias, Universidad de Colima, Apdo. Postal 25, Colima, Colima, Mexico 2 Instituto de Innovación y Desarrollo Tecnológico, Universidad de Colima, Apdo. Postal 25, Colima, Colima, Mexico

Received  February 2008 Revised  October 2008 Published  June 2009

This paper shows how occupancy urn models can be used to derive useful results in epidemiology. First we show how simple epidemic models can be re-interpreted in terms of occupancy problems. We use this reformulation to derive an expression for the expected epidemic size, that is, the total number of infected at the end of an outbreak. We also use this approach to derive point and interval estimates of the Basic Reproduction Ratio, $R_{0}$. We show that this construction does not require that the underlying SIR model be a homogeneous Poisson process, leading to a geometric distribution for the number of contacts before removal, but instead it supports a general distribution. The urn model construction is easy to handle and represents a rich field for further exploitation.
Citation: Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509
 [1] Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 [2] Sukhitha W. Vidurupola, Linda J. S. Allen. Basic stochastic models for viral infection within a host. Mathematical Biosciences & Engineering, 2012, 9 (4) : 915-935. doi: 10.3934/mbe.2012.9.915 [3] Linda J. S. Allen, P. van den Driessche. Stochastic epidemic models with a backward bifurcation. Mathematical Biosciences & Engineering, 2006, 3 (3) : 445-458. doi: 10.3934/mbe.2006.3.445 [4] Christine K. Yang, Fred Brauer. Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences & Engineering, 2008, 5 (3) : 585-599. doi: 10.3934/mbe.2008.5.585 [5] Heikki Haario, Leonid Kalachev, Marko Laine. Reduction and identification of dynamic models. Simple example: Generic receptor model. Discrete and Continuous Dynamical Systems - B, 2013, 18 (2) : 417-435. doi: 10.3934/dcdsb.2013.18.417 [6] Qingshan Yang, Xuerong Mao. Stochastic dynamics of SIRS epidemic models with random perturbation. Mathematical Biosciences & Engineering, 2014, 11 (4) : 1003-1025. doi: 10.3934/mbe.2014.11.1003 [7] Lifeng Chen, Jifa Jiang. Stochastic epidemic models driven by stochastic algorithms with constant step. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 721-736. doi: 10.3934/dcdsb.2016.21.721 [8] Qun Liu, Daqing Jiang, Ningzhong Shi, Tasawar Hayat, Ahmed Alsaedi. Stationarity and periodicity of positive solutions to stochastic SEIR epidemic models with distributed delay. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2479-2500. doi: 10.3934/dcdsb.2017127 [9] Francisco de la Hoz, Anna Doubova, Fernando Vadillo. Persistence-time estimation for some stochastic SIS epidemic models. Discrete and Continuous Dynamical Systems - B, 2015, 20 (9) : 2933-2947. doi: 10.3934/dcdsb.2015.20.2933 [10] Giulia Bertaglia, Liu Liu, Lorenzo Pareschi, Xueyu Zhu. Bi-fidelity stochastic collocation methods for epidemic transport models with uncertainties. Networks and Heterogeneous Media, 2022, 17 (3) : 401-425. doi: 10.3934/nhm.2022013 [11] Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 [12] Fred Brauer. Some simple epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 1-15. doi: 10.3934/mbe.2006.3.1 [13] Fred Brauer, Zhilan Feng, Carlos Castillo-Chávez. Discrete epidemic models. Mathematical Biosciences & Engineering, 2010, 7 (1) : 1-15. doi: 10.3934/mbe.2010.7.1 [14] Chenchen Zu, Xiaoqi Yang, Carisa Kwok Wai Yu. Sparse minimax portfolio and Sharpe ratio models. Journal of Industrial and Management Optimization, 2021  doi: 10.3934/jimo.2021111 [15] Hui Cao, Yicang Zhou. The basic reproduction number of discrete SIR and SEIS models with periodic parameters. Discrete and Continuous Dynamical Systems - B, 2013, 18 (1) : 37-56. doi: 10.3934/dcdsb.2013.18.37 [16] James M. Hyman, Jia Li. Differential susceptibility and infectivity epidemic models. Mathematical Biosciences & Engineering, 2006, 3 (1) : 89-100. doi: 10.3934/mbe.2006.3.89 [17] Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu. A final size relation for epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (2) : 159-175. doi: 10.3934/mbe.2007.4.159 [18] Qingming Gou, Wendi Wang. Global stability of two epidemic models. Discrete and Continuous Dynamical Systems - B, 2007, 8 (2) : 333-345. doi: 10.3934/dcdsb.2007.8.333 [19] Wendi Wang. Epidemic models with nonlinear infection forces. Mathematical Biosciences & Engineering, 2006, 3 (1) : 267-279. doi: 10.3934/mbe.2006.3.267 [20] Zhen Jin, Guiquan Sun, Huaiping Zhu. Epidemic models for complex networks with demographics. Mathematical Biosciences & Engineering, 2014, 11 (6) : 1295-1317. doi: 10.3934/mbe.2014.11.1295

2018 Impact Factor: 1.313

## Metrics

• PDF downloads (52)
• HTML views (0)
• Cited by (2)

## Other articlesby authors

• on AIMS
• on Google Scholar

[Back to Top]