2009, 6(4): 839-854. doi: 10.3934/mbe.2009.6.839

Insights from epidemiological game theory into gender-specific vaccination against rubella


Department of Epidemiology and Public Health, Yale School of Medicine, New Haven, CT 06510, United States, United States


Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA 30322, United States

Received  March 2009 Revised  June 2009 Published  September 2009

Rubella is a highly contagious childhood disease that causes relatively mild symptoms. However, rubella can result in severe congenital defects, known as congenital rubella syndrome (CRS), if transmitted from a mother to a fetus. Consequently, women have higher incentive to vaccinate against rubella than men do. Within the population vaccination reduces transmission but also increases the average age of infection and possibly the risk of CRS among unvaccinated females. To evaluate how the balance among these factors results in optimal coverage of vaccination, we developed a game theoretic age-structured epidemiological model of rubella transmission and vaccination. We found that high levels of vaccination for both genders are most effective in maximizing average utility across the population by decreasing the risk of CRS and reducing transmission of rubella. By contrast, the demands for vaccines driven by self-interest among males and females are $0\%$ and $100\%$ acceptance, respectively, if the cost of vaccination is relatively low. Our results suggest that the rubella vaccination by males that is likely to be achieved on voluntary basis without additional incentives would have been far lower than the population optimum, if rubella vaccine were offered separately instead of combined with measles and mumps vaccination as the MMR vaccine.
Citation: Eunha Shim, Beth Kochin, Alison Galvani. Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences & Engineering, 2009, 6 (4) : 839-854. doi: 10.3934/mbe.2009.6.839

Bruno Buonomo. A simple analysis of vaccination strategies for rubella. Mathematical Biosciences & Engineering, 2011, 8 (3) : 677-687. doi: 10.3934/mbe.2011.8.677


Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013


Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187


Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981


Marianne Akian, Stéphane Gaubert, Antoine Hochart. A game theory approach to the existence and uniqueness of nonlinear Perron-Frobenius eigenvectors. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 207-231. doi: 10.3934/dcds.2020009


Serap Ergün, Bariş Bülent Kırlar, Sırma Zeynep Alparslan Gök, Gerhard-Wilhelm Weber. An application of crypto cloud computing in social networks by cooperative game theory. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1927-1941. doi: 10.3934/jimo.2019036


Tinggui Chen, Yanhui Jiang. Research on operating mechanism for creative products supply chain based on game theory. Discrete & Continuous Dynamical Systems - S, 2015, 8 (6) : 1103-1112. doi: 10.3934/dcdss.2015.8.1103


Amina-Aicha Khennaoui, A. Othman Almatroud, Adel Ouannas, M. Mossa Al-sawalha, Giuseppe Grassi, Viet-Thanh Pham. The effect of caputo fractional difference operator on a novel game theory model. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4549-4565. doi: 10.3934/dcdsb.2020302


Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051


Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021030


Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377


Hideo Deguchi. A reaction-diffusion system arising in game theory: existence of solutions and spatial dominance. Discrete & Continuous Dynamical Systems - B, 2017, 22 (10) : 3891-3901. doi: 10.3934/dcdsb.2017200


King-Yeung Lam. Dirac-concentrations in an integro-pde model from evolutionary game theory. Discrete & Continuous Dynamical Systems - B, 2019, 24 (2) : 737-754. doi: 10.3934/dcdsb.2018205


Wai-Ki Ching, Sin-Man Choi, Min Huang. Optimal service capacity in a multiple-server queueing system: A game theory approach. Journal of Industrial & Management Optimization, 2010, 6 (1) : 73-102. doi: 10.3934/jimo.2010.6.73


Jacques Demongeot, Mohamad Ghassani, Mustapha Rachdi, Idir Ouassou, Carla Taramasco. Archimedean copula and contagion modeling in epidemiology. Networks & Heterogeneous Media, 2013, 8 (1) : 149-170. doi: 10.3934/nhm.2013.8.149


Carlos M. Hernández-Suárez, Oliver Mendoza-Cano. Applications of occupancy urn models to epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 509-520. doi: 10.3934/mbe.2009.6.509


Luca Gerardo-Giorda, Pierre Magal, Shigui Ruan, Ousmane Seydi, Glenn Webb. Preface: Population dynamics in epidemiology and ecology. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : i-ii. doi: 10.3934/dcdsb.2020125


S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999


Julijana Gjorgjieva, Kelly Smith, Gerardo Chowell, Fabio Sánchez, Jessica Snyder, Carlos Castillo-Chavez. The Role of Vaccination in the Control of SARS. Mathematical Biosciences & Engineering, 2005, 2 (4) : 753-769. doi: 10.3934/mbe.2005.2.753


Dennis L. Chao, Dobromir T. Dimitrov. Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences & Engineering, 2016, 13 (2) : 249-259. doi: 10.3934/mbe.2015001

2018 Impact Factor: 1.313


  • PDF downloads (81)
  • HTML views (0)
  • Cited by (24)

Other articles
by authors

[Back to Top]