2010, 7(3): 479-504. doi: 10.3934/mbe.2010.7.479

Impact dynamics in biped locomotion analysis: Two modelling and implementation approaches

1. 

University of La Réunion, Analyse et Ingénierie Mathématique AIM/LIM EA 2525, Parc Technologique Universitaire, Bâtiment 2, 2 rue Joseph Wetzell, 97490 Sainte-Clotilde, France

2. 

Robotics department, Mihajlo Pupin Institute, University of Belgrade, Zvezdara, Volgina 15, 11060 Belgrade, Serbia

Received  September 2009 Revised  December 2009 Published  June 2010

Stability during the biped locomotion and especially humanoid robots walking is a big challenge in robotics modelling. This paper compares the classical and novel methodologies of modelling and algorithmic implementation of the impact/contact dynamics that occurs during a biped motion. Thus, after establishing the free biped locomotion system model, a formulation using variational inequalities theory via a Linear Complementarity Problem then an impedance model are explicitly developed. Results of the numerical simulations are compared to the experimental measurements then the both approaches are discussed.
Citation: Khalid Addi, Aleksandar D. Rodić. Impact dynamics in biped locomotion analysis: Two modelling and implementation approaches. Mathematical Biosciences & Engineering, 2010, 7 (3) : 479-504. doi: 10.3934/mbe.2010.7.479
[1]

Andaluzia Matei, Mircea Sofonea. Dual formulation of a viscoplastic contact problem with unilateral constraint. Discrete and Continuous Dynamical Systems - S, 2013, 6 (6) : 1587-1598. doi: 10.3934/dcdss.2013.6.1587

[2]

Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479

[3]

Felix X.-F. Ye, Hong Qian. Stochastic dynamics Ⅱ: Finite random dynamical systems, linear representation, and entropy production. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 4341-4366. doi: 10.3934/dcdsb.2019122

[4]

Mohamed Aly Tawhid. Nonsmooth generalized complementarity as unconstrained optimization. Journal of Industrial and Management Optimization, 2010, 6 (2) : 411-423. doi: 10.3934/jimo.2010.6.411

[5]

Oanh Chau, R. Oujja, Mohamed Rochdi. A mathematical analysis of a dynamical frictional contact model in thermoviscoelasticity. Discrete and Continuous Dynamical Systems - S, 2008, 1 (1) : 61-70. doi: 10.3934/dcdss.2008.1.61

[6]

Qihuai Liu, Pedro J. Torres. Orbital dynamics on invariant sets of contact Hamiltonian systems. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021297

[7]

Zhisheng Shuai, P. van den Driessche. Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (2) : 393-411. doi: 10.3934/mbe.2012.9.393

[8]

Fengming Ma, Yiju Wang, Hongge Zhao. A potential reduction method for the generalized linear complementarity problem over a polyhedral cone. Journal of Industrial and Management Optimization, 2010, 6 (1) : 259-267. doi: 10.3934/jimo.2010.6.259

[9]

Jie Zhang, Yue Wu, Liwei Zhang. A class of smoothing SAA methods for a stochastic linear complementarity problem. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 145-156. doi: 10.3934/naco.2012.2.145

[10]

D. Motreanu, V. V. Motreanu, Nikolaos S. Papageorgiou. Nonautonomous resonant periodic systems with indefinite linear part and a nonsmooth potential. Communications on Pure and Applied Analysis, 2011, 10 (5) : 1401-1414. doi: 10.3934/cpaa.2011.10.1401

[11]

Kari Astala, Jennifer L. Mueller, Lassi Päivärinta, Allan Perämäki, Samuli Siltanen. Direct electrical impedance tomography for nonsmooth conductivities. Inverse Problems and Imaging, 2011, 5 (3) : 531-549. doi: 10.3934/ipi.2011.5.531

[12]

Gilles Carbou, Bernard Hanouzet. Relaxation approximation of the Kerr model for the impedance initial-boundary value problem. Conference Publications, 2007, 2007 (Special) : 212-220. doi: 10.3934/proc.2007.2007.212

[13]

Jianquan Li, Xiaoqin Wang, Xiaolin Lin. Impact of behavioral change on the epidemic characteristics of an epidemic model without vital dynamics. Mathematical Biosciences & Engineering, 2018, 15 (6) : 1425-1434. doi: 10.3934/mbe.2018065

[14]

Zhenyuan Guo, Lihong Huang, Xingfu Zou. Impact of discontinuous treatments on disease dynamics in an SIR epidemic model. Mathematical Biosciences & Engineering, 2012, 9 (1) : 97-110. doi: 10.3934/mbe.2012.9.97

[15]

Huong Le Thi, Stéphane Junca, Mathias Legrand. First Return Time to the contact hyperplane for $ N $-degree-of-freedom vibro-impact systems. Discrete and Continuous Dynamical Systems - B, 2022, 27 (1) : 1-44. doi: 10.3934/dcdsb.2021031

[16]

Martin Redmann, Melina A. Freitag. Balanced model order reduction for linear random dynamical systems driven by Lévy noise. Journal of Computational Dynamics, 2018, 5 (1&2) : 33-59. doi: 10.3934/jcd.2018002

[17]

Yunan Wu, Guangya Chen, T. C. Edwin Cheng. A vector network equilibrium problem with a unilateral constraint. Journal of Industrial and Management Optimization, 2010, 6 (3) : 453-464. doi: 10.3934/jimo.2010.6.453

[18]

Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707

[19]

Li-Xia Liu, Sanyang Liu, Chun-Feng Wang. Smoothing Newton methods for symmetric cone linear complementarity problem with the Cartesian $P$/$P_0$-property. Journal of Industrial and Management Optimization, 2011, 7 (1) : 53-66. doi: 10.3934/jimo.2011.7.53

[20]

Matthias Morzfeld, Daniel T. Kawano, Fai Ma. Characterization of damped linear dynamical systems in free motion. Numerical Algebra, Control and Optimization, 2013, 3 (1) : 49-62. doi: 10.3934/naco.2013.3.49

2018 Impact Factor: 1.313

Metrics

  • PDF downloads (50)
  • HTML views (0)
  • Cited by (2)

Other articles
by authors

[Back to Top]