-
Previous Article
A model of drug resistance with infection by health care workers
- MBE Home
- This Issue
-
Next Article
Using nonlinear model predictive control to find optimal therapeutic strategies to modulate inflammation
A model of varicella-zoster reactivation
1. | Department of Mathematics and Computer Science, Hobart and William Smith Colleges, Geneva, NY 14456, United States |
2. | Department of Mathematics, University of California, Davis, CA 95616, United States |
References:
[1] |
A. Abendroth and A. M. Arvin, Immune evasion as a pathogenic mechanism of varicella zoster virus, Seminars in Immunology, 13 (2001), 27-39.
doi: doi:10.1006/smim.2001.0293. |
[2] |
Centers for Disease Control and Prevention, Prevention of varicella: Updated recommendations of the Advisory Committee on Immunization Practices (ACIP), Morbidity and Mortality Weekly Report, 48, 1999. |
[3] |
Centers for Disease Control and Prevention, Prevention of herpes zoster, Morbidity and Mortality Weekly Report, 57, 2008. |
[4] |
J. I. Cohen, S. E. Straus and A. M. Arvin, Varicella-zoster virus replication, pathogenesis and management, in "Field's Virology" (eds. D. M. Knipe and P. M. Howley), Wolters Kluwer Health/Lippincott Williams and Wilkins, (2007), 2773-2818. |
[5] |
D. H. Gilden, R. J. Cohrs and R. Mahalingam, Clinical and molecular pathogenesis of varicella virus infection, Viral Immunology, 16 (2003), 243-258. |
[6] |
R. E. Hope-Simpson, The nature of herpes zoster: A long-term study and a new hypothesis, Proc. R. Soc. Med., 58 (1965), 9-20. |
[7] |
R. E. Hope-Simpson, Post-herpetic neuralgia, Journal of the Royal College of General Practitioners, 25 (1975), 571-575. |
[8] |
M. J. Levin, D Barber, E. Goldblatt, M. Jones, B. LaFleur, C. Chan, D. Stinson, G. O. Zerbe and A. R. Hayward, Use of a live attenuated varicella vaccine to boost varicella-specific immune responses in seropositive people 55 years of age or older: Duration of booster effect, The Journal of Infectious Diseases, 178 (suppl. 1) (1998), S109-S112. |
[9] |
M. J. Levin, J. G. Smith, R. M. Kaufhold, D. Barber, A. R. Hayward, C. Y. Chan, I. S. F. Chan, D. J. J. Li, W. Wang, P. M. Keller, A. Shaw, J. L. Silber, K. Schlienger, I. Chalikonda, S. J. R. Vessey and M. J. Caulfield, Decline of varicella zoster virus (VZV)-specific cell mediated immunity with increasing age and boosting with a high-dose VZV vaccine, The Journal of Infectious Diseases, 188 (2003), 1336-1344. |
[10] |
M. Reichelt, L. Zerboni and A.M. Arvin, Mechansisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia, Journal of Virology, 82 (2008), 3971-3983.
doi: doi:10.1128/JVI.02592-07. |
[11] |
K. E. Schmader and R. H. Dworkin, Natural history and treatment of herpes zoster, The Journal of Pain, 9 (suppl. 1) (2008), 53-59.
doi: doi:10.1016/j.jpain.2007.10.002. |
[12] |
S. L. Thomas, J. G. Wheeler and A. J. Hall, Contacts with varicella or with children and protection against herpes zoster in adults: A case-control study, The Lancet, 360 (2002), 678-682. |
[13] |
J. M. Weinberg., Herpes zoster: Epidemiology, natural history and common complications, Journal of the American Academy of Dermatology, 57 (2007), S130-S135.
doi: doi:10.1016/j.jaad.2007.08.046. |
[14] |
A. Wilson, M. Sharp, C. M. Koropchak, S. F. Ting and A. M. Arvin, Subclinical varicella-zoster virus viremia, herpes zoster, and T lymphocyte immunity to varicella-zoster viral antigens after bone marrow transplants, Journal of Infectious Diseases, 165 (1992), 119-126. |
show all references
References:
[1] |
A. Abendroth and A. M. Arvin, Immune evasion as a pathogenic mechanism of varicella zoster virus, Seminars in Immunology, 13 (2001), 27-39.
doi: doi:10.1006/smim.2001.0293. |
[2] |
Centers for Disease Control and Prevention, Prevention of varicella: Updated recommendations of the Advisory Committee on Immunization Practices (ACIP), Morbidity and Mortality Weekly Report, 48, 1999. |
[3] |
Centers for Disease Control and Prevention, Prevention of herpes zoster, Morbidity and Mortality Weekly Report, 57, 2008. |
[4] |
J. I. Cohen, S. E. Straus and A. M. Arvin, Varicella-zoster virus replication, pathogenesis and management, in "Field's Virology" (eds. D. M. Knipe and P. M. Howley), Wolters Kluwer Health/Lippincott Williams and Wilkins, (2007), 2773-2818. |
[5] |
D. H. Gilden, R. J. Cohrs and R. Mahalingam, Clinical and molecular pathogenesis of varicella virus infection, Viral Immunology, 16 (2003), 243-258. |
[6] |
R. E. Hope-Simpson, The nature of herpes zoster: A long-term study and a new hypothesis, Proc. R. Soc. Med., 58 (1965), 9-20. |
[7] |
R. E. Hope-Simpson, Post-herpetic neuralgia, Journal of the Royal College of General Practitioners, 25 (1975), 571-575. |
[8] |
M. J. Levin, D Barber, E. Goldblatt, M. Jones, B. LaFleur, C. Chan, D. Stinson, G. O. Zerbe and A. R. Hayward, Use of a live attenuated varicella vaccine to boost varicella-specific immune responses in seropositive people 55 years of age or older: Duration of booster effect, The Journal of Infectious Diseases, 178 (suppl. 1) (1998), S109-S112. |
[9] |
M. J. Levin, J. G. Smith, R. M. Kaufhold, D. Barber, A. R. Hayward, C. Y. Chan, I. S. F. Chan, D. J. J. Li, W. Wang, P. M. Keller, A. Shaw, J. L. Silber, K. Schlienger, I. Chalikonda, S. J. R. Vessey and M. J. Caulfield, Decline of varicella zoster virus (VZV)-specific cell mediated immunity with increasing age and boosting with a high-dose VZV vaccine, The Journal of Infectious Diseases, 188 (2003), 1336-1344. |
[10] |
M. Reichelt, L. Zerboni and A.M. Arvin, Mechansisms of varicella-zoster virus neuropathogenesis in human dorsal root ganglia, Journal of Virology, 82 (2008), 3971-3983.
doi: doi:10.1128/JVI.02592-07. |
[11] |
K. E. Schmader and R. H. Dworkin, Natural history and treatment of herpes zoster, The Journal of Pain, 9 (suppl. 1) (2008), 53-59.
doi: doi:10.1016/j.jpain.2007.10.002. |
[12] |
S. L. Thomas, J. G. Wheeler and A. J. Hall, Contacts with varicella or with children and protection against herpes zoster in adults: A case-control study, The Lancet, 360 (2002), 678-682. |
[13] |
J. M. Weinberg., Herpes zoster: Epidemiology, natural history and common complications, Journal of the American Academy of Dermatology, 57 (2007), S130-S135.
doi: doi:10.1016/j.jaad.2007.08.046. |
[14] |
A. Wilson, M. Sharp, C. M. Koropchak, S. F. Ting and A. M. Arvin, Subclinical varicella-zoster virus viremia, herpes zoster, and T lymphocyte immunity to varicella-zoster viral antigens after bone marrow transplants, Journal of Infectious Diseases, 165 (1992), 119-126. |
[1] |
Avner Friedman, Chuan Xue. A mathematical model for chronic wounds. Mathematical Biosciences & Engineering, 2011, 8 (2) : 253-261. doi: 10.3934/mbe.2011.8.253 |
[2] |
Jinliang Wang, Xiu Dong. Analysis of an HIV infection model incorporating latency age and infection age. Mathematical Biosciences & Engineering, 2018, 15 (3) : 569-594. doi: 10.3934/mbe.2018026 |
[3] |
Hao Kang, Qimin Huang, Shigui Ruan. Periodic solutions of an age-structured epidemic model with periodic infection rate. Communications on Pure and Applied Analysis, 2020, 19 (10) : 4955-4972. doi: 10.3934/cpaa.2020220 |
[4] |
Pep Charusanti, Xiao Hu, Luonan Chen, Daniel Neuhauser, Joseph J. DiStefano III. A mathematical model of BCR-ABL autophosphorylation, signaling through the CRKL pathway, and Gleevec dynamics in chronic myeloid leukemia. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 99-114. doi: 10.3934/dcdsb.2004.4.99 |
[5] |
Jinliang Wang, Jiying Lang, Yuming Chen. Global dynamics of an age-structured HIV infection model incorporating latency and cell-to-cell transmission. Discrete and Continuous Dynamical Systems - B, 2017, 22 (10) : 3721-3747. doi: 10.3934/dcdsb.2017186 |
[6] |
Samantha Erwin, Stanca M. Ciupe. Germinal center dynamics during acute and chronic infection. Mathematical Biosciences & Engineering, 2017, 14 (3) : 655-671. doi: 10.3934/mbe.2017037 |
[7] |
Natalia L. Komarova. Mathematical modeling of cyclic treatments of chronic myeloid leukemia. Mathematical Biosciences & Engineering, 2011, 8 (2) : 289-306. doi: 10.3934/mbe.2011.8.289 |
[8] |
Xuejuan Lu, Lulu Hui, Shengqiang Liu, Jia Li. A mathematical model of HTLV-I infection with two time delays. Mathematical Biosciences & Engineering, 2015, 12 (3) : 431-449. doi: 10.3934/mbe.2015.12.431 |
[9] |
Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche. Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences & Engineering, 2009, 6 (2) : 333-362. doi: 10.3934/mbe.2009.6.333 |
[10] |
Suxia Zhang, Xiaxia Xu. A mathematical model for hepatitis B with infection-age structure. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1329-1346. doi: 10.3934/dcdsb.2016.21.1329 |
[11] |
Erika Asano, Louis J. Gross, Suzanne Lenhart, Leslie A. Real. Optimal control of vaccine distribution in a rabies metapopulation model. Mathematical Biosciences & Engineering, 2008, 5 (2) : 219-238. doi: 10.3934/mbe.2008.5.219 |
[12] |
Sebastián Ferrer, Francisco Crespo. Parametric quartic Hamiltonian model. A unified treatment of classic integrable systems. Journal of Geometric Mechanics, 2014, 6 (4) : 479-502. doi: 10.3934/jgm.2014.6.479 |
[13] |
Ghendrih Philippe, Hauray Maxime, Anne Nouri. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution. Kinetic and Related Models, 2009, 2 (4) : 707-725. doi: 10.3934/krm.2009.2.707 |
[14] |
Mamadou L. Diagne, Ousmane Seydi, Aissata A. B. Sy. A two-group age of infection epidemic model with periodic behavioral changes. Discrete and Continuous Dynamical Systems - B, 2020, 25 (6) : 2057-2092. doi: 10.3934/dcdsb.2019202 |
[15] |
Nikolay Pertsev, Konstantin Loginov, Gennady Bocharov. Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays. Discrete and Continuous Dynamical Systems - S, 2020, 13 (9) : 2365-2384. doi: 10.3934/dcdss.2020141 |
[16] |
Seema Nanda, Lisette dePillis, Ami Radunskaya. B cell chronic lymphocytic leukemia - A model with immune response. Discrete and Continuous Dynamical Systems - B, 2013, 18 (4) : 1053-1076. doi: 10.3934/dcdsb.2013.18.1053 |
[17] |
Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479 |
[18] |
Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485-512. doi: 10.3934/mbe.2006.3.485 |
[19] |
Daniel Vasiliu, Jianjun Paul Tian. Periodic solutions of a model for tumor virotherapy. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1587-1597. doi: 10.3934/dcdss.2011.4.1587 |
[20] |
Faker Ben Belgacem. Uniqueness for an ill-posed reaction-dispersion model. Application to organic pollution in stream-waters. Inverse Problems and Imaging, 2012, 6 (2) : 163-181. doi: 10.3934/ipi.2012.6.163 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]