\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

A model of drug resistance with infection by health care workers

Abstract Related Papers Cited by
  • Antibiotic resistant organisms (ARO) pose an increasing serious threat in hospitals. One of the most life threatening ARO is methicillin-resistant staphylococcus aureus (MRSA). In this paper, we introduced a new mathematical model which focuses on the evolution of two bacterial strains, drug-resistant and non-drug resistant, residing within the population of patients and health care workers in a hospital. The model predicts that as soon as drug is administered, the average load of the non-resistant bacteria will decrease and eventually (after 6 weeks of the model's simulation) reach a very low level. However, the average load of drug-resistant bacteria will initially decrease, after treatment, but will later bounce back and remain at a high level. This level can be made lower if larger amount of drug is given or if the contact between health care workers and patients is reduced.
    Mathematics Subject Classification: Primary: 92C60; Secondary: 34B60, 35L65.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    D. J. Austin, M. J. M. Bonten, R. A. Weinstein, S. Slaughter and R. M. Anderson, Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs, PNAS, 96 (1999), 6908-6913.doi: doi:10.1073/pnas.96.12.6908.

    [2]

    M. C. J. Bootsma, O. Diekmann and M. J. M. Bonten, Controlling methicillin-resistant staphylococcus aureus: Quantifying the effects of interventions and rapid diagnostic testing, PNAS, 103 (2006), 5620-5625.doi: doi:10.1073/pnas.0510077103.

    [3]

    M. J. M. Bonten, R. Willems and R. A. Weinstein, Vancomycin-resistant enterococci: Why are they here, and where do they come from?, The Lancet Infectious Diseases, 1 (2001), 314-325.doi: doi:10.1016/S1473-3099(01)00145-1.

    [4]

    D. S. Burgess, Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance, Chest, 115 (1999), 19S-23S.doi: doi:10.1378/chest.115.suppl_1.19S.

    [5]

    B. S. Cooper, G. F. Medley and G. M. Scott, Preliminary analysis of the transmission dynamics of nosocomial infections: Stochastic and management effects, The Journal of Hospital Infection, 43 (1999), 131-147.doi: doi:10.1053/jhin.1998.0647.

    [6]

    E. M. C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria, PLoS ONE, 3 (2008), e4036+.doi: doi:10.1371/journal.pone.0004036.

    [7]

    E. M. C. D'Agata, M. A. Horn and G. F. Webb, The impact of persistent gastrointestinal colonization on the transmission dynamics of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 185 (2002), 766-773.doi: doi:10.1086/339293.

    [8]

    E. M. C. D'Agata, P. Magal, D. Olivier, S. Ruan and G. F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487-499.doi: doi:10.1016/j.jtbi.2007.08.011.

    [9]

    E. M. C. D'Agata, G. F. Webb and M. A. Horn, A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 192 (2005), 2004-2011.doi: doi:10.1086/498041.

    [10]

    E. M. C. D'Agata, G. F. Webb, M. A. Horn, R. C. Moellering and S. Ruan, Modeling the invasion of community-acquired methicillin-resistant staphylococcus aureus into hospitals, Clinical Infectious Diseases, 48 (2009), 274-284.doi: doi:10.1086/595844.

    [11]

    B. M. Farr, C. D. Salgado, T. B. Karchmer and R. J. Sherertz, Can antibiotic-resistant nosocomial infections be controlled? The Lancet Infectious Diseases, 1 (2001), 38-45.doi: doi:10.1016/S1473-3099(01)00020-2.

    [12]

    H. Grundmann, M. Aires-de-Sousa, J. Boyce and E. Tiemersma, Emergence and resurgence of meticillin-resistant staphylococcus aureus as a public-health threat, The Lancet Infectious Diseases, 368 (2006), 874-885.

    [13]

    H. Grundmann and B. Hellriegel, Mathematical modelling: A tool for hospital infection control, The Lancet Infectious Diseases, 6 (2006), 39-45.doi: doi:10.1016/S1473-3099(05)70325-X.

    [14]

    K. Hiramatsu, Vancomycin-resistant staphylococcus aureus: A new model of antibiotic resistance, The Lancet Infectious Diseases, 1 (2001), 147-155.doi: doi:10.1016/S1473-3099(01)00091-3.

    [15]

    A. Handel, E. Margolis and B. R. Levin, Exploring the role of the immune response in preventing antibiotic resistance, Journal of Theoretical Biology, 256 (2009), 655-662.doi: doi:10.1016/j.jtbi.2008.10.025.

    [16]

    M. Lipsitch, C. T. Bergstrom and B. R. Levin, The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions, PNAS, 97 (2000), 1938-43.doi: doi:10.1073/pnas.97.4.1938.

    [17]

    R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition, Lectures in Mamathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1992.

    [18]

    R. J. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.doi: doi:10.1017/CBO9780511791253.

    [19]

    L. R. Peterson, Squeezing the antibiotic balloon: The impact of antimicrobial classes on emerging resistance, Clin. Microbiol. Infect. 11 Suppl., 5 (2005), 4-16.

    [20]

    D. L. Smith, J. Dushoff, E. N. Perencevich, A. D. Harris and S. A. Levin, Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: Resistance is a regional problem, PNAS, 101 (2004), 3709-3714.doi: doi:10.1073/pnas.0400456101.

    [21]

    L. Temime, P. Y. Boëlle, P. Courvalin and D. Guillemot, Bacterial resistance to penicillin g by decreased affinity of penicillin-binding proteins: A mathematical model, Emerging Infect. Dis., 9 (2003), 411-417.

    [22]

    G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic-resistant bacterial epidemics in hospitals, PNAS, 102 (2005), 13343-13348.doi: doi:10.1073/pnas.0504053102.

    [23]

    G. F. Webb, M. A. Horn, E. M. C. D'Agata, R. C. Moellering and S. Ruan, Competition of hospital-acquired and community-acquired methicillin-resistant Staphylococcus aureus strains in hospitals, J. Biol. Dyn., 4 (2010), 115-129.doi: doi:10.1080/17513750903026411.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(41) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return