Citation: |
[1] |
D. J. Austin, M. J. M. Bonten, R. A. Weinstein, S. Slaughter and R. M. Anderson, Vancomycin-resistant enterococci in intensive-care hospital settings: Transmission dynamics, persistence, and the impact of infection control programs, PNAS, 96 (1999), 6908-6913.doi: doi:10.1073/pnas.96.12.6908. |
[2] |
M. C. J. Bootsma, O. Diekmann and M. J. M. Bonten, Controlling methicillin-resistant staphylococcus aureus: Quantifying the effects of interventions and rapid diagnostic testing, PNAS, 103 (2006), 5620-5625.doi: doi:10.1073/pnas.0510077103. |
[3] |
M. J. M. Bonten, R. Willems and R. A. Weinstein, Vancomycin-resistant enterococci: Why are they here, and where do they come from?, The Lancet Infectious Diseases, 1 (2001), 314-325.doi: doi:10.1016/S1473-3099(01)00145-1. |
[4] |
D. S. Burgess, Pharmacodynamic principles of antimicrobial therapy in the prevention of resistance, Chest, 115 (1999), 19S-23S.doi: doi:10.1378/chest.115.suppl_1.19S. |
[5] |
B. S. Cooper, G. F. Medley and G. M. Scott, Preliminary analysis of the transmission dynamics of nosocomial infections: Stochastic and management effects, The Journal of Hospital Infection, 43 (1999), 131-147.doi: doi:10.1053/jhin.1998.0647. |
[6] |
E. M. C. D'Agata, M. Dupont-Rouzeyrol, P. Magal, D. Olivier and S. Ruan, The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria, PLoS ONE, 3 (2008), e4036+.doi: doi:10.1371/journal.pone.0004036. |
[7] |
E. M. C. D'Agata, M. A. Horn and G. F. Webb, The impact of persistent gastrointestinal colonization on the transmission dynamics of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 185 (2002), 766-773.doi: doi:10.1086/339293. |
[8] |
E. M. C. D'Agata, P. Magal, D. Olivier, S. Ruan and G. F. Webb, Modeling antibiotic resistance in hospitals: The impact of minimizing treatment duration, J. Theor. Biol., 249 (2007), 487-499.doi: doi:10.1016/j.jtbi.2007.08.011. |
[9] |
E. M. C. D'Agata, G. F. Webb and M. A. Horn, A mathematical model quantifying the impact of antibiotic exposure and other interventions on the endemic prevalence of vancomycin-resistant enterococci, The Journal of Infectious Diseases, 192 (2005), 2004-2011.doi: doi:10.1086/498041. |
[10] |
E. M. C. D'Agata, G. F. Webb, M. A. Horn, R. C. Moellering and S. Ruan, Modeling the invasion of community-acquired methicillin-resistant staphylococcus aureus into hospitals, Clinical Infectious Diseases, 48 (2009), 274-284.doi: doi:10.1086/595844. |
[11] |
B. M. Farr, C. D. Salgado, T. B. Karchmer and R. J. Sherertz, Can antibiotic-resistant nosocomial infections be controlled? The Lancet Infectious Diseases, 1 (2001), 38-45.doi: doi:10.1016/S1473-3099(01)00020-2. |
[12] |
H. Grundmann, M. Aires-de-Sousa, J. Boyce and E. Tiemersma, Emergence and resurgence of meticillin-resistant staphylococcus aureus as a public-health threat, The Lancet Infectious Diseases, 368 (2006), 874-885. |
[13] |
H. Grundmann and B. Hellriegel, Mathematical modelling: A tool for hospital infection control, The Lancet Infectious Diseases, 6 (2006), 39-45.doi: doi:10.1016/S1473-3099(05)70325-X. |
[14] |
K. Hiramatsu, Vancomycin-resistant staphylococcus aureus: A new model of antibiotic resistance, The Lancet Infectious Diseases, 1 (2001), 147-155.doi: doi:10.1016/S1473-3099(01)00091-3. |
[15] |
A. Handel, E. Margolis and B. R. Levin, Exploring the role of the immune response in preventing antibiotic resistance, Journal of Theoretical Biology, 256 (2009), 655-662.doi: doi:10.1016/j.jtbi.2008.10.025. |
[16] |
M. Lipsitch, C. T. Bergstrom and B. R. Levin, The epidemiology of antibiotic resistance in hospitals: Paradoxes and prescriptions, PNAS, 97 (2000), 1938-43.doi: doi:10.1073/pnas.97.4.1938. |
[17] |
R. J. LeVeque, "Numerical Methods for Conservation Laws," Second edition, Lectures in Mamathematics, ETH Zürich, Birkhäuser Verlag, Basel, 1992. |
[18] |
R. J. LeVeque, "Finite Volume Methods for Hyperbolic Problems," Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2002.doi: doi:10.1017/CBO9780511791253. |
[19] |
L. R. Peterson, Squeezing the antibiotic balloon: The impact of antimicrobial classes on emerging resistance, Clin. Microbiol. Infect. 11 Suppl., 5 (2005), 4-16. |
[20] |
D. L. Smith, J. Dushoff, E. N. Perencevich, A. D. Harris and S. A. Levin, Persistent colonization and the spread of antibiotic resistance in nosocomial pathogens: Resistance is a regional problem, PNAS, 101 (2004), 3709-3714.doi: doi:10.1073/pnas.0400456101. |
[21] |
L. Temime, P. Y. Boëlle, P. Courvalin and D. Guillemot, Bacterial resistance to penicillin g by decreased affinity of penicillin-binding proteins: A mathematical model, Emerging Infect. Dis., 9 (2003), 411-417. |
[22] |
G. F. Webb, E. M. C. D'Agata, P. Magal and S. Ruan, A model of antibiotic-resistant bacterial epidemics in hospitals, PNAS, 102 (2005), 13343-13348.doi: doi:10.1073/pnas.0504053102. |
[23] |
G. F. Webb, M. A. Horn, E. M. C. D'Agata, R. C. Moellering and S. Ruan, Competition of hospital-acquired and community-acquired methicillin-resistant Staphylococcus aureus strains in hospitals, J. Biol. Dyn., 4 (2010), 115-129.doi: doi:10.1080/17513750903026411. |