-
Previous Article
An application of queuing theory to SIS and SEIS epidemic models
- MBE Home
- This Issue
-
Next Article
A model of drug resistance with infection by health care workers
Minimal state models for ionic channels involved in glucagon secretion
1. | Dept. Ciencias Básicas, Universidad Autónoma Metropolitana Azcapotzalco, México D.F., 02200, Mexico |
2. | Dept. Matemática Aplicada y Ciencias de la Computación, Universidad de Cantabria, Santander, 39005, Spain |
3. | Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, 03202, Spain |
References:
[1] |
G. C. Amberg, S. D. Koh, Y. Imaizumi, S. Ohya and K. M. Sanders, A-type potassium currents in smooth muscle, Am. J. Physiol. Cell Physiol., 284 (2003), 583-595. |
[2] |
S. Barg, J. Galvanovskis, S. O. Göpel, P. Rorsman and L. Eliasson, Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting $\alpha$-cells, Diabetes, 49 (2000), 1500-1510.
doi: doi:10.2337/diabetes.49.9.1500. |
[3] |
S. Barg, X. Ma, L. Eliasson, et al., Fast exocytosis with few ca channels in insulin-secreting mouse pancreatic b cells, Biophys. J., 81 (2001), 3308-3323.
doi: doi:10.1016/S0006-3495(01)75964-4. |
[4] |
K. C. Bittner and D. A. Hanck, The relationship between single-channel and whole-cell conductance in the t-type $ca^{2+}$ channel $ca_v3.1$, Biophys. J., 95 (2008), 931-941.
doi: doi:10.1529/biophysj.107.128124. |
[5] |
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan and A. C. Powers, Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy, J. Histochem. Cytochem., 53 (2005), 1087-1097.
doi: doi:10.1369/jhc.5C6684.2005. |
[6] |
R. C. Cannon and G. D'Alessandro, The ion channel inverse problem: Neuroinformatics meets biophysics, PLoS Computational Biology, 2 (2006), 862-869.
doi: doi:10.1371/journal.pcbi.0020091. |
[7] |
P. M. Diderichsen and S. O. Göpel, Modelling the electrical activity of pancreatic $\alpha$-cells based on experimental data from intact mouse islets, J. Biol. Phys., 32 (2006), 209-229.
doi: doi:10.1007/s10867-006-9013-0. |
[8] |
C. P. Fall, E. S. Marland, J. M. Wagner and J. J. Tyson, "Computational Cell Biology," 1st ed., Springer-Verlag, New York, 2002. |
[9] |
Z.-P. Feng, J. Hamid, C. Doering, S. E. Jarvis, G. M. Bosey, E. Bourinet, T. P. Snutch and G. W. Zamponi, Amino acid residues outside of the pore region contribute to n-type calcium channel permeation, J. Biol. Chem., 276 (2001), 5726-5730.
doi: doi:10.1074/jbc.C000791200. |
[10] |
A. Gil and V. González-Vélez, Exocytotic dynamics and calcium cooperativity effects in the calyx of held synapse: A modelling study, J. Comput. Neurosci., 28 (2010), 65-76.
doi: doi:10.1007/s10827-009-0187-x. |
[11] |
V. González-Vélez and H. González-Vélez, Parallel stochastic simulation of macroscopic calcium currents, J. Bioinf. Comput. Biol., 5 (2007), 755-772.
doi: doi:10.1142/S0219720007002679. |
[12] |
S. O. Göpel, T. Kanno, S. Barg, X-G. Weng, J. Gromada and P. Rorsman, Regulation of glucagon release in mouse $\alpha$-cells by $k_{ATP}$ channels and inactivation of ttx-sensitive $na^{+}$ channels, J. Physiol., 528 (2000), 509-520.
doi: doi:10.1111/j.1469-7793.2000.00509.x. |
[13] |
J. Gromada, K. Bokvist, W.-G. Ding, S. Barg, K. Buschard, E. Renström and P. Rorsman, Adrenaline stimulates glucagon secretion in pancreatic a-cells by increasing the $ca^{2+}$ current and the number of granules close to the l-type $ca^{2+}$ channels, J. Gen. Physiol., 110 (1997), 217-228.
doi: doi:10.1085/jgp.110.3.217. |
[14] |
J. Gromada, I. Franklin and C. B. Wollheim, $alpha$-cells of the endocrine pancreas: 35 years of research but the enigma remains, Endocrine Rev. 28 (2007), 84-116.
doi: doi:10.1210/er.2006-0007. |
[15] |
M. Gurkiewicz and A. Korngreen, A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm, PLoS Computational Biology, 3 (2007), 1633-1647.
doi: doi:10.1371/journal.pcbi.0030169. |
[16] |
H. Kasai and E. Neher, Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line, J. Physiol., 448 (1992), 161-188. |
[17] |
J. Klingauf and E. Neher, Modeling buffered ca$^{2+}$ diffusion near the membrane: Implications for secretion in neuroendocrine cells, Biophys. J., 72 (1997), 674-690.
doi: doi:10.1016/S0006-3495(97)78704-6. |
[18] |
Y. M. Leung, I. Ahmed, L. Sheu, R. G. Tsushima, N. E. Diamant and H. Y. Gaisano, Two populations of pancreatic islet $\alpha$-cells displaying distinct $ca^{2+}$ channel properties, Biochem. Biophys. Res. Comm., 345 (2006), 340-344.
doi: doi:10.1016/j.bbrc.2006.04.066. |
[19] |
Y. M. Leung, I. Ahmed, L. Sheu, R. G. Tsushima, N. E. Diamant, M. Hara and H. Y. Gaisano, Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse, Endocrinology, 146 (2005), 4766-4775.
doi: doi:10.1210/en.2005-0803. |
[20] |
P. E. MacDonald, Y. Z. De Marinis, R. Ramracheya, A. Salehi, X. Ma, P. R. V. Johnson, R. Cox, L. Eliasson and P. Rorsman, A $k_{ATP}$ channel-dependent pathway within $\alpha$ cells regulates glucagon release from both rodent and human islets of langerhans, PLoS Biology, 5 (2007), 1236-1247.
doi: doi:10.1371/journal.pbio.0050143. |
[21] |
M. E. Meyer-Hermann, The electrophysiology of the $\beta$-cell based on single transmembrane protein characteristics, Biophys. J., 93 (2007), 2952-2968.
doi: doi:10.1529/biophysj.107.106096. |
[22] |
L. S. Milescu, G. Akk and F. Sachs, Maximum likelihood estimation of ion channel kinetics from macroscopic currents, Biophys. J., 88 (2005), 2494-2515.
doi: doi:10.1529/biophysj.104.053256. |
[23] |
F. Qin, Principles of single-channel kinetic analysis, Meth. Mol. Biol., 288 (2007), 253-286.
doi: doi:10.1007/978-1-59745-529-9_17. |
[24] |
I. Quesada, E. Tudurí, C. Ripoll and A. Nadal, Physiology of the pancreatic $\alpha$-cell and glucagon secretion: Role in glucose homeostasis and diabetes, J. Endocrin., 199 (2008), 5-19.
doi: doi:10.1677/JOE-08-0290. |
[25] |
M. S. P. Sansom, F. G. Ball, C. J. Kerry, R. McGee, R. L. Ramsey and P. N. R. Usherwood, Markov, fractal, diffusion, and related models of ion channel gating, Biophys. J., 56 (1989), 1229-1243.
doi: doi:10.1016/S0006-3495(89)82770-5. |
[26] |
J. Segura, A. Gil and B. Soria, Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters, Biophys. J., 79 (2000), 1771-1786.
doi: doi:10.1016/S0006-3495(00)76429-0. |
[27] |
J. R. Serrano, E. Pérez-Reyes and S. W. Jones, State-dependent inactivation of the $\alpha$1g t-type calcium channel, J. Gen. Physiol., 114 (1999), 185-201.
doi: doi:10.1085/jgp.114.2.185. |
[28] |
M. F. Sheets, B. E. Scanley, D. A. Hanck, J. C. Makielski and H. A. Fozzard, Open sodium channel properties of single canine cardiac purkinje cells, Biophys. J., 52 (1987), 13-22.
doi: doi:10.1016/S0006-3495(87)83183-1. |
[29] |
M. Slucca, J. S. Harmon, E. A. Oseid, J. Bryan and R. P. Robertson, Atp-sensitive $k^+$ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation, Diabetes, 59 (2010), 128-134.
doi: doi:10.2337/db09-1098. |
[30] |
D. O. Smith, J. L. Rosenheimer and R. E. Kalil, Delayed rectifier and a-type potassium channels associated with $k_v2.1$ and $k_v4.3$ expression in embryonic rat neural progenitor cells, PLoS One, 3 (2008), 1-9.
doi: doi:10.1371/journal.pone.0001604. |
[31] |
A. F. Strassberg and L. J. DeFelice, Limitations of the Hodgkin-Huxley formalism: Effects of single channel kinetics on transmembrane voltage dynamics, Neural Comp., 5 (1993), 843-855.
doi: doi:10.1162/neco.1993.5.6.843. |
[32] |
N. A. Tamarina, A. Kuznetsov, L. E. Fridlyand and L. H. Philipson, Delayed-rectifier ($k_v2.1$) regulation of pancreatic $\beta$-cell calcium responses to glucose: Inhibitor specificity and modeling, Am. J. Physiol. Endocrinol. Metab., 289 (2005), E578-E585.
doi: doi:10.1152/ajpendo.00054.2005. |
[33] |
T. I. Tóth and V. Crunelli, Estimation of the activation and kinetic properties of $i_{Na}$ and $i_k$ from the time course of the action potential, J. Neurosci. Meth., 111 (2001), 111-126.
doi: doi:10.1016/S0165-0270(01)00433-2. |
[34] |
E. Tudurí, E. Filiputti, E. M. Carneiro and I. Quesada, Inhibition of $ca^{2+}$ signaling and glucagon secretion in mouse pancreatic $\alpha$-cells by extracellular atp and purinergic receptors, Am. J. Physiol. Endocrinol. Metab., 294 (2008), E952-E960.
doi: doi:10.1152/ajpendo.00641.2007. |
[35] |
C. A. Vandenberg and F. Bezanilla, A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon, Biophys. J., 60 (1991), 1511-1533.
doi: doi:10.1016/S0006-3495(91)82186-5. |
[36] |
S. Vignali, V. Leiss, R. Karl, F. Hofmann and A. Welling, Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic a- and b-cells, J. Physiol., 572 (2006), 691-706. |
[37] |
J. Villanueva, C. J. Torregrosa-Hetland, A. Gil, V. González-Vélez, J. Segura, S. Viniegra and L. M. Gutiérrez, The organization of the secretory machinery in neuroendocrine chromaffin cells as a major factor to model exocytosis, HFSP Journal, 4 (2010), 85-92.
doi: doi:10.2976/1.3338707. |
[38] |
S. Wang, V. E. Bondarenko, Y. Qu, M. J. Morales, R. L. Rasmusson and H. C. Strauss, Activation properties of $k_v4.3$ channels: Time, voltage and $[k^+]_o$ dependence, J. Physiol., 557 (2004), 705-717.
doi: doi:10.1113/jphysiol.2003.058578. |
[39] |
A. R. Willms, Neurofit: Software for fitting hodgkin-huxley models to voltage-clamp data, J. Neurosci. Meth., 121 (2002), 139-150.
doi: doi:10.1016/S0165-0270(02)00227-3. |
[40] |
A. R. Willms, D. J. Baro, R. M. Harris-Warrick and J. Guckenheimer, An improved parameter estimation method for hodgkin-huxley models, J. Comp. Neurosci., 6 (1999), 145-168.
doi: doi:10.1023/A:1008880518515. |
[41] |
G. Zamponi, "Voltage-gated Calcium Channels," 1st ed., Kluwer Academic/Plenum Publishers, New York, 2005. |
show all references
References:
[1] |
G. C. Amberg, S. D. Koh, Y. Imaizumi, S. Ohya and K. M. Sanders, A-type potassium currents in smooth muscle, Am. J. Physiol. Cell Physiol., 284 (2003), 583-595. |
[2] |
S. Barg, J. Galvanovskis, S. O. Göpel, P. Rorsman and L. Eliasson, Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting $\alpha$-cells, Diabetes, 49 (2000), 1500-1510.
doi: doi:10.2337/diabetes.49.9.1500. |
[3] |
S. Barg, X. Ma, L. Eliasson, et al., Fast exocytosis with few ca channels in insulin-secreting mouse pancreatic b cells, Biophys. J., 81 (2001), 3308-3323.
doi: doi:10.1016/S0006-3495(01)75964-4. |
[4] |
K. C. Bittner and D. A. Hanck, The relationship between single-channel and whole-cell conductance in the t-type $ca^{2+}$ channel $ca_v3.1$, Biophys. J., 95 (2008), 931-941.
doi: doi:10.1529/biophysj.107.128124. |
[5] |
M. Brissova, M. J. Fowler, W. E. Nicholson, A. Chu, B. Hirshberg, D. M. Harlan and A. C. Powers, Assessment of human pancreatic islet architecture and composition by laser scanning confocal microscopy, J. Histochem. Cytochem., 53 (2005), 1087-1097.
doi: doi:10.1369/jhc.5C6684.2005. |
[6] |
R. C. Cannon and G. D'Alessandro, The ion channel inverse problem: Neuroinformatics meets biophysics, PLoS Computational Biology, 2 (2006), 862-869.
doi: doi:10.1371/journal.pcbi.0020091. |
[7] |
P. M. Diderichsen and S. O. Göpel, Modelling the electrical activity of pancreatic $\alpha$-cells based on experimental data from intact mouse islets, J. Biol. Phys., 32 (2006), 209-229.
doi: doi:10.1007/s10867-006-9013-0. |
[8] |
C. P. Fall, E. S. Marland, J. M. Wagner and J. J. Tyson, "Computational Cell Biology," 1st ed., Springer-Verlag, New York, 2002. |
[9] |
Z.-P. Feng, J. Hamid, C. Doering, S. E. Jarvis, G. M. Bosey, E. Bourinet, T. P. Snutch and G. W. Zamponi, Amino acid residues outside of the pore region contribute to n-type calcium channel permeation, J. Biol. Chem., 276 (2001), 5726-5730.
doi: doi:10.1074/jbc.C000791200. |
[10] |
A. Gil and V. González-Vélez, Exocytotic dynamics and calcium cooperativity effects in the calyx of held synapse: A modelling study, J. Comput. Neurosci., 28 (2010), 65-76.
doi: doi:10.1007/s10827-009-0187-x. |
[11] |
V. González-Vélez and H. González-Vélez, Parallel stochastic simulation of macroscopic calcium currents, J. Bioinf. Comput. Biol., 5 (2007), 755-772.
doi: doi:10.1142/S0219720007002679. |
[12] |
S. O. Göpel, T. Kanno, S. Barg, X-G. Weng, J. Gromada and P. Rorsman, Regulation of glucagon release in mouse $\alpha$-cells by $k_{ATP}$ channels and inactivation of ttx-sensitive $na^{+}$ channels, J. Physiol., 528 (2000), 509-520.
doi: doi:10.1111/j.1469-7793.2000.00509.x. |
[13] |
J. Gromada, K. Bokvist, W.-G. Ding, S. Barg, K. Buschard, E. Renström and P. Rorsman, Adrenaline stimulates glucagon secretion in pancreatic a-cells by increasing the $ca^{2+}$ current and the number of granules close to the l-type $ca^{2+}$ channels, J. Gen. Physiol., 110 (1997), 217-228.
doi: doi:10.1085/jgp.110.3.217. |
[14] |
J. Gromada, I. Franklin and C. B. Wollheim, $alpha$-cells of the endocrine pancreas: 35 years of research but the enigma remains, Endocrine Rev. 28 (2007), 84-116.
doi: doi:10.1210/er.2006-0007. |
[15] |
M. Gurkiewicz and A. Korngreen, A numerical approach to ion channel modelling using whole-cell voltage-clamp recordings and a genetic algorithm, PLoS Computational Biology, 3 (2007), 1633-1647.
doi: doi:10.1371/journal.pcbi.0030169. |
[16] |
H. Kasai and E. Neher, Dihydropyridine-sensitive and omega-conotoxin-sensitive calcium channels in a mammalian neuroblastoma-glioma cell line, J. Physiol., 448 (1992), 161-188. |
[17] |
J. Klingauf and E. Neher, Modeling buffered ca$^{2+}$ diffusion near the membrane: Implications for secretion in neuroendocrine cells, Biophys. J., 72 (1997), 674-690.
doi: doi:10.1016/S0006-3495(97)78704-6. |
[18] |
Y. M. Leung, I. Ahmed, L. Sheu, R. G. Tsushima, N. E. Diamant and H. Y. Gaisano, Two populations of pancreatic islet $\alpha$-cells displaying distinct $ca^{2+}$ channel properties, Biochem. Biophys. Res. Comm., 345 (2006), 340-344.
doi: doi:10.1016/j.bbrc.2006.04.066. |
[19] |
Y. M. Leung, I. Ahmed, L. Sheu, R. G. Tsushima, N. E. Diamant, M. Hara and H. Y. Gaisano, Electrophysiological characterization of pancreatic islet cells in the mouse insulin promoter-green fluorescent protein mouse, Endocrinology, 146 (2005), 4766-4775.
doi: doi:10.1210/en.2005-0803. |
[20] |
P. E. MacDonald, Y. Z. De Marinis, R. Ramracheya, A. Salehi, X. Ma, P. R. V. Johnson, R. Cox, L. Eliasson and P. Rorsman, A $k_{ATP}$ channel-dependent pathway within $\alpha$ cells regulates glucagon release from both rodent and human islets of langerhans, PLoS Biology, 5 (2007), 1236-1247.
doi: doi:10.1371/journal.pbio.0050143. |
[21] |
M. E. Meyer-Hermann, The electrophysiology of the $\beta$-cell based on single transmembrane protein characteristics, Biophys. J., 93 (2007), 2952-2968.
doi: doi:10.1529/biophysj.107.106096. |
[22] |
L. S. Milescu, G. Akk and F. Sachs, Maximum likelihood estimation of ion channel kinetics from macroscopic currents, Biophys. J., 88 (2005), 2494-2515.
doi: doi:10.1529/biophysj.104.053256. |
[23] |
F. Qin, Principles of single-channel kinetic analysis, Meth. Mol. Biol., 288 (2007), 253-286.
doi: doi:10.1007/978-1-59745-529-9_17. |
[24] |
I. Quesada, E. Tudurí, C. Ripoll and A. Nadal, Physiology of the pancreatic $\alpha$-cell and glucagon secretion: Role in glucose homeostasis and diabetes, J. Endocrin., 199 (2008), 5-19.
doi: doi:10.1677/JOE-08-0290. |
[25] |
M. S. P. Sansom, F. G. Ball, C. J. Kerry, R. McGee, R. L. Ramsey and P. N. R. Usherwood, Markov, fractal, diffusion, and related models of ion channel gating, Biophys. J., 56 (1989), 1229-1243.
doi: doi:10.1016/S0006-3495(89)82770-5. |
[26] |
J. Segura, A. Gil and B. Soria, Modeling study of exocytosis in neuroendocrine cells: Influence of the geometrical parameters, Biophys. J., 79 (2000), 1771-1786.
doi: doi:10.1016/S0006-3495(00)76429-0. |
[27] |
J. R. Serrano, E. Pérez-Reyes and S. W. Jones, State-dependent inactivation of the $\alpha$1g t-type calcium channel, J. Gen. Physiol., 114 (1999), 185-201.
doi: doi:10.1085/jgp.114.2.185. |
[28] |
M. F. Sheets, B. E. Scanley, D. A. Hanck, J. C. Makielski and H. A. Fozzard, Open sodium channel properties of single canine cardiac purkinje cells, Biophys. J., 52 (1987), 13-22.
doi: doi:10.1016/S0006-3495(87)83183-1. |
[29] |
M. Slucca, J. S. Harmon, E. A. Oseid, J. Bryan and R. P. Robertson, Atp-sensitive $k^+$ channel mediates the zinc switch-off signal for glucagon response during glucose deprivation, Diabetes, 59 (2010), 128-134.
doi: doi:10.2337/db09-1098. |
[30] |
D. O. Smith, J. L. Rosenheimer and R. E. Kalil, Delayed rectifier and a-type potassium channels associated with $k_v2.1$ and $k_v4.3$ expression in embryonic rat neural progenitor cells, PLoS One, 3 (2008), 1-9.
doi: doi:10.1371/journal.pone.0001604. |
[31] |
A. F. Strassberg and L. J. DeFelice, Limitations of the Hodgkin-Huxley formalism: Effects of single channel kinetics on transmembrane voltage dynamics, Neural Comp., 5 (1993), 843-855.
doi: doi:10.1162/neco.1993.5.6.843. |
[32] |
N. A. Tamarina, A. Kuznetsov, L. E. Fridlyand and L. H. Philipson, Delayed-rectifier ($k_v2.1$) regulation of pancreatic $\beta$-cell calcium responses to glucose: Inhibitor specificity and modeling, Am. J. Physiol. Endocrinol. Metab., 289 (2005), E578-E585.
doi: doi:10.1152/ajpendo.00054.2005. |
[33] |
T. I. Tóth and V. Crunelli, Estimation of the activation and kinetic properties of $i_{Na}$ and $i_k$ from the time course of the action potential, J. Neurosci. Meth., 111 (2001), 111-126.
doi: doi:10.1016/S0165-0270(01)00433-2. |
[34] |
E. Tudurí, E. Filiputti, E. M. Carneiro and I. Quesada, Inhibition of $ca^{2+}$ signaling and glucagon secretion in mouse pancreatic $\alpha$-cells by extracellular atp and purinergic receptors, Am. J. Physiol. Endocrinol. Metab., 294 (2008), E952-E960.
doi: doi:10.1152/ajpendo.00641.2007. |
[35] |
C. A. Vandenberg and F. Bezanilla, A sodium channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant axon, Biophys. J., 60 (1991), 1511-1533.
doi: doi:10.1016/S0006-3495(91)82186-5. |
[36] |
S. Vignali, V. Leiss, R. Karl, F. Hofmann and A. Welling, Characterization of voltage-dependent sodium and calcium channels in mouse pancreatic a- and b-cells, J. Physiol., 572 (2006), 691-706. |
[37] |
J. Villanueva, C. J. Torregrosa-Hetland, A. Gil, V. González-Vélez, J. Segura, S. Viniegra and L. M. Gutiérrez, The organization of the secretory machinery in neuroendocrine chromaffin cells as a major factor to model exocytosis, HFSP Journal, 4 (2010), 85-92.
doi: doi:10.2976/1.3338707. |
[38] |
S. Wang, V. E. Bondarenko, Y. Qu, M. J. Morales, R. L. Rasmusson and H. C. Strauss, Activation properties of $k_v4.3$ channels: Time, voltage and $[k^+]_o$ dependence, J. Physiol., 557 (2004), 705-717.
doi: doi:10.1113/jphysiol.2003.058578. |
[39] |
A. R. Willms, Neurofit: Software for fitting hodgkin-huxley models to voltage-clamp data, J. Neurosci. Meth., 121 (2002), 139-150.
doi: doi:10.1016/S0165-0270(02)00227-3. |
[40] |
A. R. Willms, D. J. Baro, R. M. Harris-Warrick and J. Guckenheimer, An improved parameter estimation method for hodgkin-huxley models, J. Comp. Neurosci., 6 (1999), 145-168.
doi: doi:10.1023/A:1008880518515. |
[41] |
G. Zamponi, "Voltage-gated Calcium Channels," 1st ed., Kluwer Academic/Plenum Publishers, New York, 2005. |
[1] |
Ajay Jasra, Kody J. H. Law, Yaxian Xu. Markov chain simulation for multilevel Monte Carlo. Foundations of Data Science, 2021, 3 (1) : 27-47. doi: 10.3934/fods.2021004 |
[2] |
Guillaume Bal, Ian Langmore, Youssef Marzouk. Bayesian inverse problems with Monte Carlo forward models. Inverse Problems and Imaging, 2013, 7 (1) : 81-105. doi: 10.3934/ipi.2013.7.81 |
[3] |
Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du. Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences & Engineering, 2006, 3 (4) : 683-696. doi: 10.3934/mbe.2006.3.683 |
[4] |
Olli-Pekka Tossavainen, Daniel B. Work. Markov Chain Monte Carlo based inverse modeling of traffic flows using GPS data. Networks and Heterogeneous Media, 2013, 8 (3) : 803-824. doi: 10.3934/nhm.2013.8.803 |
[5] |
Zhiyan Ding, Qin Li. Constrained Ensemble Langevin Monte Carlo. Foundations of Data Science, 2022, 4 (1) : 37-70. doi: 10.3934/fods.2021034 |
[6] |
Mazyar Zahedi-Seresht, Gholam-Reza Jahanshahloo, Josef Jablonsky, Sedighe Asghariniya. A new Monte Carlo based procedure for complete ranking efficient units in DEA models. Numerical Algebra, Control and Optimization, 2017, 7 (4) : 403-416. doi: 10.3934/naco.2017025 |
[7] |
Giacomo Dimarco. The moment guided Monte Carlo method for the Boltzmann equation. Kinetic and Related Models, 2013, 6 (2) : 291-315. doi: 10.3934/krm.2013.6.291 |
[8] |
Theodore Papamarkou, Alexey Lindo, Eric B. Ford. Geometric adaptive Monte Carlo in random environment. Foundations of Data Science, 2021, 3 (2) : 201-224. doi: 10.3934/fods.2021014 |
[9] |
Michael B. Giles, Kristian Debrabant, Andreas Rössler. Analysis of multilevel Monte Carlo path simulation using the Milstein discretisation. Discrete and Continuous Dynamical Systems - B, 2019, 24 (8) : 3881-3903. doi: 10.3934/dcdsb.2018335 |
[10] |
Chjan C. Lim, Joseph Nebus, Syed M. Assad. Monte-Carlo and polyhedron-based simulations I: extremal states of the logarithmic N-body problem on a sphere. Discrete and Continuous Dynamical Systems - B, 2003, 3 (3) : 313-342. doi: 10.3934/dcdsb.2003.3.313 |
[11] |
Joseph Nebus. The Dirichlet quotient of point vortex interactions on the surface of the sphere examined by Monte Carlo experiments. Discrete and Continuous Dynamical Systems - B, 2005, 5 (1) : 125-136. doi: 10.3934/dcdsb.2005.5.125 |
[12] |
Cynthia Ferreira, Guillaume James, Michel Peyrard. Nonlinear lattice models for biopolymers: Dynamical coupling to a ionic cloud and application to actin filaments. Discrete and Continuous Dynamical Systems - S, 2011, 4 (5) : 1147-1166. doi: 10.3934/dcdss.2011.4.1147 |
[13] |
Samuel N. Cohen. Uncertainty and filtering of hidden Markov models in discrete time. Probability, Uncertainty and Quantitative Risk, 2020, 5 (0) : 4-. doi: 10.1186/s41546-020-00046-x |
[14] |
Aseel Farhat, M. S Jolly, Evelyn Lunasin. Bounds on energy and enstrophy for the 3D Navier-Stokes-$\alpha$ and Leray-$\alpha$ models. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2127-2140. doi: 10.3934/cpaa.2014.13.2127 |
[15] |
Katarzyna Pichór, Ryszard Rudnicki. Applications of stochastic semigroups to cell cycle models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2365-2381. doi: 10.3934/dcdsb.2019099 |
[16] |
Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141 |
[17] |
Pengwen Chen, Changfeng Gui. Alpha divergences based mass transport models for image matching problems. Inverse Problems and Imaging, 2011, 5 (3) : 551-590. doi: 10.3934/ipi.2011.5.551 |
[18] |
Dong-Mei Zhu, Wai-Ki Ching, Robert J. Elliott, Tak-Kuen Siu, Lianmin Zhang. Hidden Markov models with threshold effects and their applications to oil price forecasting. Journal of Industrial and Management Optimization, 2017, 13 (2) : 757-773. doi: 10.3934/jimo.2016045 |
[19] |
Roberto C. Alamino, Nestor Caticha. Bayesian online algorithms for learning in discrete hidden Markov models. Discrete and Continuous Dynamical Systems - B, 2008, 9 (1) : 1-10. doi: 10.3934/dcdsb.2008.9.1 |
[20] |
Marianito R. Rodrigo, Rogemar S. Mamon. Bond pricing formulas for Markov-modulated affine term structure models. Journal of Industrial and Management Optimization, 2021, 17 (5) : 2685-2702. doi: 10.3934/jimo.2020089 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]