\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Pandemic influenza: Modelling and public health perspectives

Abstract Related Papers Cited by
  • We describe the application of mathematical models in the study of disease epidemics with particular focus on pandemic influenza. We outline the general mathematical approach and the complications arising from attempts to apply it for disease outbreak management in a real public health context.
    Mathematics Subject Classification: Primary: 92D30; Secondary: 92-01.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. E. Alexander, S. M. Dietrich, Y. Hua and S. M. Moghadas, A comparative evaluation of modelling strategies for the effect of treatment and host interactions on the spread of drug resistance, J. Theor. Biol., 259 (2009), 253-263.doi: 10.1016/j.jtbi.2009.03.029.

    [2]

    N. Arinaminpathy and A. R. McLean, Antiviral treatment for the control of pandemic influenza: Some logistical constraints, J. Roy. Soc. Interface, 5 (2008), 545-553.doi: 10.1098/rsif.2007.1152.

    [3]

    J. Arino, C. S. Bowman and S. M. Moghadas, Antiviral resistance during pandemic influenza: Implications for stockpiling and drug use, BMC Infect. Dis., 9 (2009), 8-19.doi: 10.1186/1471-2334-9-8.

    [4]

    J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, Simple models for containment of a pandemic, J. Roy. Soc. Interface, 3 (2006), 453-457.doi: 10.1098/rsif.2006.0112.

    [5]

    J. Arino, F. Brauer, P. van den Driessche, J. Watmough and J. Wu, A model for influenza with vaccination and antiviral treatment, J. Theor. Biol., 253 (2008), 118-130.doi: 10.1016/j.jtbi.2008.02.026.

    [6]

    J. Arino, R. Jordan and P. van den Driessche, Quarantine in a multi-species epidemic model with spatial dynamics, Math. Biosc., 206 (2007), 46-60.doi: 10.1016/j.mbs.2005.09.002.

    [7]

    C. T. Bauch, J. Lloyd-Smith, M. Coffee and A. Galvani, Dynamically modeling SARS and respiratory EIDS: Past, present, future, Epidemiology, 16 (2005), 791-801doi: 10.1097/01.ede.0000181633.80269.4c.

    [8]

    D. Bernoulli, Essai d'une nouvelle analyse de la mortalité causée par la petite verole, Mem. Math. Phys. Acad. R. Sci. Paris, (1766), 1-45.

    [9]

    S. M. Blower and H. Dowlatabadi, Sensitivity and uncertainty analysis of complex models of disease transmission: An HIV Model as an example, Int. Stat. Rev., 62 (1994), 229-243.

    [10]

    M. C. J. Bootsma and N. M. Ferguson, The effect of public health measures on the 1918 influenza pandemic in U.S. cities, Proc Nat. Acad Sci U.S.A, 104 (2007), 7588-7593.doi: 10.1073/pnas.0611071104.

    [11]

    F. Brauer, Age of infection models and the final size relation, Math. Biosc. & Eng., 5 (2008), 681–-690.doi: 10.3934/mbe.2008.5.681.

    [12]

    F. Brauer, Compartmental models in epidemiology, in Mathematical Epidemiology (F. Brauer, P. van den Driessche, J. Wu, eds.), Lecture Notes in Mathematics, Mathematical Biosciences subseries 1945, Springer (2008), 19-79.

    [13]

    F. Brauer, C. Castillo-Chavez and Z. Feng, Discrete epidemic models, Math. Biosc. & Eng., 7 (2010), 1-15.doi: 10.3934/mbe.2010.7.1.

    [14]

    P. Caley, D. J. Philp and K. McCracken, Quantifying social distancing arising from pandemic influenza, J. Roy. Soc. Interface, 5 (2008), 631-639.doi: 10.1098/rsif.2007.1197.

    [15]

    CDC, Drug susceptibility of swine-origin influenza A (H1N1) viruses, April 2009, MMWR, 58 (2009), 433-435.

    [16]

    CDC, Oseltamivir-resistant 2009 pandemic influenza A (H1N1) virus infection in two summer campers receiving prophylaxis - North Carolina, 2009, MMWR, 58 (2009), 969-972.

    [17]

    G. Chowell, P. W. Fenimore, M. Castillo-Garsow and C. Castillo - Chavez, SARS outbreaks in Ontario, Hong Kong, and Singapore: The role of diagnosis and isolation as a control mechanism, J. Theor. Biol., 224 (2003), 1-8.doi: 10.1016/S0022-5193(03)00228-5.

    [18]

    V. Colizza, A. Barrat, M. Barthelemy, A. J. Valleron and A. Vespignani, Modelling the worldwide spread of pandemic influenza: baseline case and containment interventions, PLoS Med., 4 (2007), e13.doi: 10.1371/journal.pmed.0040013.

    [19]

    N. J. Cox, S. E. Tamblyn and T. Tam, Influenza pandemic planning, Vaccine, 21 (2003), 1801-1803.

    [20]

    V. T. Covello, Communicating right to know information on chemical risks, Environ. Sci. Technol., 23 (1989), 1444-1449.doi: 10.1021/es00070a002.

    [21]

    T. Day, A. Park, N. Madras, A. B. Gumel and J. Wu, When is quarantine a useful control strategy for emerging infectious diseases?, Am J Epidemiol., 163 (2006), 479-485.doi: 10.1093/aje/kwj056.

    [22]

    O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases," Wiley, Chichester, 2000.

    [23]

    O. Diekmann, J. A. P. Heesterbeek and M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. Roy. Soc. Interface, 7 (2010), 873-885.doi: 10.1098/rsif.2009.0386.

    [24]

    J. Dushoff, J. B. Plotkin, S. A. Levin and D. J. Earn, Dynamical resonance can account for seasonality of influenza epidemics, Proc. Natl. Acad. Sci. USA, 101 (2004), 16915-16916.doi: 10.1073/pnas.0407293101.

    [25]

    W. J. Edmunds, G. F. Medley and D. J. Nokes, Evaluating the cost-effectiveness of vaccination programmes: A dynamic perspective, Stat. Med., 18 (1999), 3263-3282.doi: 10.1002/(SICI)1097-0258(19991215)18:23<3263::AID-SIM315>3.0.CO;2-3.

    [26]

    J. M. Epstein, J. Parker, D. Cummings and R. A. Hammond, Coupled contagion dynamics of fear and disease: mathematical and computational explorations, PLoS ONE, 3 (2008), e3955.doi: 10.1371/journal.pone.0003955.

    [27]

    N. M. Ferguson, D. A. T. Cummings, S. Cauchemez, C. Fraser, S. Riley, A. Meeyai, S. Iamsirithaworn and D. S. Burke, Strategies for containing an emerging influenza pandemic in Southeast Asia, Nature, 437 (2005), 209-214.doi: 10.1038/nature04017.

    [28]

    N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452.doi: 10.1038/nature04795.

    [29]

    C. Fraser, S. Riley, R. M. Anderson and N. M. Ferguson, Factors that make an infectious disease outbreak controllable, Proc. Nat. Acad. Sci. USA, 101 (2004), 6146-6151.doi: 10.1073/pnas.0307506101.

    [30]

    C. Fraser, C. A. Donnelly, S. Cauchemez, W. P. Hanage, M. D. Van Kerkhove, T. D. Hollingsworth, J. Griffin, R. F. Baggaley, H. E. Jenkins, E. J. Lyons, T. Jombart, W. R. Hinsley, N. C. Grassly, F. Balloux, A. C. Ghani and N. M. Ferguson, Pandemic potential of a strain of influenza A (H1N1): Early findings, Science, 324 (2009), 1557-1561.doi: 10.1126/science.1176062.

    [31]

    T. C. Germann, K. Kadau, I. M. Longini and C. A. Macken, Mitigation strategies for pandemic influenza in the United States, Proc. Nat. Acad. Sci. U.S.A., 103 (2006), 5935-5940.doi: 10.1073/pnas.0601266103.

    [32]

    M. Z. Gojovic, B. Sander, D. Fisman, M. D. Krahn and C. T. Bauch, Modelling mitigation strategies for pandemic(H1N1) 2009, Can. Med. Assoc. J., 181 (2009), 673-680.doi: 10.1503/cmaj.091641.

    [33]

    A. B. Gumel, S. Ruan, T. Day, J. Watmough, F. Brauer, P. van den Driessche, D. Gabrielson, C. Bowman, M. E. Alexander, S. Ardal, J. Wu and B. M. Sahai, Modeling strategies for controlling SARS outbreaks in Toronto, Hong Kong, Singapore and Beijing, Proc. Roy. Soc. London, Series B, 271 (2004), 2223-2232.doi: 10.1098/rspb.2004.2800.

    [34]

    M. E. Halloran, N. M. Ferguson, S. Eubank, I. M. Longini, D. A. Cummings, B. Lewis, S. Xu, C. Fraser, A. Vullikanti, T. C. Germann et al, Modeling targeted layered containment of an influenza pandemic in the United States, Proc. Nat. Acad. Sci. U.S.A, 105 (2008), 4639-4644.

    [35]

    E. Hansen, T. Day, J. Arino, J. Wu and S. M. Moghadas, Strategies for use of oseltamivir and zanamivir during pandemic outbreaks, Can. J. Infect. Dis. Med. Microb., (2010) in press.

    [36]

    W. O. Kermack and A. G McKendrick, A contribution to the mathematical theory of epidemics, Proc. Royal Soc. London, 115 (1927), 700-721.doi: 10.1098/rspa.1927.0118.

    [37]

    K. Khan, J. Arino, W. Hu, P. Raposo, J. Sears, F. Calderon, C. Heidebrecht, M. Macdonald, J. Lieuw, A. Chan and M. Gardam, Spread of a novel influenza A (H1N1) virus via global airline transportation, New England J. Med., 361 (2009), 212-214.doi: 10.1056/NEJMc0904559.

    [38]

    Q. M. Le, H. F. Wertheim, N. D. Tran, H. R. van Doorn, T. H. Nguyen and P. Hornby, Vietnam H1N1 Investigation Team, A community cluster of oseltamivir - resistant cases of 2009 H1N1 influenza, New England. J. Medicine, 362 (2010), 86-87.doi: 10.1056/NEJMc0910448.

    [39]

    M. Lipsitch, T. Cohen, M. Murray and B. R. Levin, Antiviral resistance and the control of pandemic influenza, PLoS Medicine, 4 (2007), e15, doi:10.1371.

    [40]

    M. Lipsitch, T. Cohen, B. Cooper, J. M. Robins, S. Ma, G. Gopalakrisna, S. K. Chew, C. C. Tam, M. H. Samore, D. Fisman and M. Murray, Transmission dynamics and control of severe acute respiratory syndrome, Science, 300 (2003), 1966-1970.doi: 10.1126/science.1086616.

    [41]

    J. O. Lloyd-Smith, S. J. Schreiber, P. E. Kopp and W. M. Getz, Superspreading and the effect of individual variation on disease emergence, Nature, 438 (2005), 355-359.doi: 10.1038/nature04153.

    [42]

    I. M. Longini Jr., M. E. Halloran, A. Nizam and Y. Yang, Containing pandemic influenza with antiviral agents, Am. J. Epidem., 159 (2004), 623-633.doi: 10.1093/aje/kwh092.

    [43]

    I. M. Longini Jr., A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D. T. Cummings and M. E. Halloran, Containing pandemic influenza at the source, Science, 309 (2004), 623-633.

    [44]

    I. M. Longini, A. Nizam, S. Xu, K. Ungchusak, W. Hanshaoworakul, D. A. T. Cummings and M. E. Halloran, Containing pandemic influenza at the source, Science, 309 (2005), 1083-1087.doi: 10.1126/science.1115717.

    [45]

    A. C. Lowen, J. Steel, S. Murbareka and P. Palese, High temperature ($30\,^{\circ} C$) blocks aerosol but not contact transmission of influenza, J. Virol., 82 (2008), 5650-5652.doi: 10.1128/JVI.00325-08.

    [46]

    J. Ma and D. J. Earn, Generality of the final size formula for an epidemic of a newly invading infectious disease, Bull. Math. Biol., 68 (2006), 679-702.doi: 10.1007/s11538-005-9047-7.

    [47]

    S. Merler, P. Poletti, M. Ajelli, B. Caprile and P. Manfredi, Coinfection can trigger multiple pandemic waves, J. Theor. Biol., 254 (2008), 499-507.doi: 10.1016/j.jtbi.2008.06.004.

    [48]

    L. A. Meyers, Contact network epidemiology: Bond percolation applied to infectious disease prediction and control, Bull. Am. Math. Soc., 44 (2007), 63-86.doi: 10.1090/S0273-0979-06-01148-7.

    [49]

    L. A. Meyers, B. Pourbohloul, M. E. J. Newman, D. M. Skowronski and R. C. Brunham, Network theory and SARS; predicting outbreak diversity, J. Theor. Biol., 232 (2005), 71-81.doi: 10.1016/j.jtbi.2004.07.026.

    [50]

    J. C. Miller, B. Davoudi, R. Meza, A. C. Slim and B. Pourbohloul, Epidemics with general generation interval distribution, J. Theor. Biol., 262 (2010), 107-115.doi: 10.1016/j.jtbi.2009.08.007.

    [51]

    S. M. Moghadas, C. S. Bowman, G. Röst and J. Wu, Population-wide emergence of antiviral resistance during pandemic influenza, PLoS ONE, 3 (2008), e1839.

    [52]

    S. M. Moghadas, N. Pizzi, J. Wu and P. Yan, Managing public health crises: The role of models in pandemic preparedness, Influenza and Other Respiratory Viruses, 3 (2008), 75-79.doi: 10.1111/j.1750-2659.2009.00081.x.

    [53]

    J. Mossong, N. Hens, M. Jit, P. Beutels, K. Auranen, R. Mikalajczyk, M. Massari, S. Salmoso, G. Scalia Tomba, J. Wallinga, J. Heijna, M. Sadkowska-Tadus, M. Rosinski and W. J. Edmunds, Social contacts and mixing patterns relevant to the spread of infectious diseases, PLoS Medicine, 5 (2008), e74.

    [54]

    M. E. J. Newman, The spread of epidemic disease on networks, Phys. Rev. E, 66 (2002), 016128.doi: 10.1103/PhysRevE.66.016128.

    [55]

    M. E. J. Newman, A. L. Barabási and D. J. Watts, "The Structure and Dynamics of Networks," Princeton University Press, 2006.

    [56]

    R. Olinsky, A. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008), 827-834.doi: 10.1007/s00285-007-0140-4.

    [57]

    P. Palese, Influenza; Old and new threats, Nature Med., 10 (2004), S82-S87.doi: 10.1038/nm1141.

    [58]

    Pan-infORM, Modelling an influenza pandemic: A guide for the perplexed, Can. Med. Assoc. J., 181 (2009), 171-173.doi: 10.1503/cmaj.090885.

    [59]

    P. Poletti, B. Caprile, M. Ajelli, A. Puliese and S. Merler, Spontaneous behavioural changes in response to epidemics, J. Theor. Biol., 260 (2009), 31-40.doi: 10.1016/j.jtbi.2009.04.029.

    [60]

    B. Pourbohloul, A. Ahued, B. Davoudi, R. Meza, L. A. Meyers, D. M. Skowronski, I. Villase\ nor, F. Galván, P. Cravioto, D. J. D. Earn, J. Dushoff, D. Fisman, W. J. Edmunds, N. Hupert, S. V. Scarpino, J. Trujillo, M. Lutzow, J. Morales, A. Contreras, C. Ch, Initial human transmission dynamics of the pandemic (H1N1) 2009 virus in North America, Influenza and Other Respiratory Viruses, 3 (2009), 215-222.

  • 加载中
SHARE

Article Metrics

HTML views() PDF downloads(66) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return