-
Previous Article
A dynamic model describing heterotrophic culture of chorella and its stability analysis
- MBE Home
- This Issue
-
Next Article
Empirical mode decomposition/Hilbert transform analysis of postural responses to small amplitude anterior-posterior sinusoidal translations of varying frequencies
Dynamics of a delay Schistosomiasis model in snail infections
1. | Department of Mathematics and Statistics, LAMPS and CDM, York University, Toronto, ON, M3J 1P3, Canada |
2. | Jiangsu Provincial Key Laboratory for NSLSCS, School of Mathematics, Nanjing Normal University, Nanjing, Jiangsu, 210046 |
3. | Department of Mathematics and Statistics, Laboratory of Mathematical Parallel systems (LAMPS) and CDM, York University, Toronto M3J 1P3 |
References:
[1] |
J. Carr, "Applications of Centre Manifold Theory," Applied Mathematical Sciences, 35, Springer-Verlag, New York-Berlin, 1981. |
[2] |
C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay, Math. Biosci., 211 (2008), 333-341.
doi: 10.1016/j.mbs.2007.11.001. |
[3] |
S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory," Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, New York-Berlin, 1982. |
[4] |
K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations, Funkcial. Ekvac., 29 (1986), 77-90. |
[5] |
C. L. Cosgrove and V. R. Southgate, Mating interactions between Schistosoma mansoni and S. margrebowiei, Parasitology, 125 (2002), 233-243.
doi: 10.1017/S0031182002002111. |
[6] |
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000. |
[7] |
T. Faria, Normal forms and bifurcations for delay differential equations, in "Delay Differential Equations and Applications," NATO Science Series II: Mathematics, Physics and Chemistry, 205, Springer, Dordrecht, (2006), 227-282. |
[8] |
Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics, Math. Biosci., 177/178 (2002), 271-286.
doi: 10.1016/S0025-5564(01)00115-8. |
[9] |
Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with two migrating human groups, Math. Comput. Modelling., 41 (2005), 1213-1230.
doi: 10.1016/j.mcm.2004.10.023. |
[10] |
M. Golubitsky and D. G Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I, Applied Mathematical Sciences, 51, Springer-Verlag, New York, 1985. |
[11] |
K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992. |
[12] |
B. Gryseels, K. Polman, J. Clerinx and L. Kestens, Human schistosomiasis, The Lancet., 368 (2006), 1106-1118.
doi: 10.1016/S0140-6736(06)69440-3. |
[13] |
J. K. Hale, "Theory of Functional Differential Equations," Second edition, Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. |
[14] |
J. K. Hale and S. M. Lunel, "Introduction to Functional-Differential Equations," Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. |
[15] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Application of Hopf Bifurcation," London Mathematical Society Lecture Note Series, 41, Cambridge University Press, Cambridge-New York, 1981. |
[16] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993. |
[17] |
G. MacDonald, The dynamics of helminth infections with spatial reference to schistosomes, Trans. Roy. Soc. Trop. Med. Hyg., 59 (1965), 489-506.
doi: 10.1016/0035-9203(65)90152-5. |
[18] |
I. Nåsell, A hybrid model of schistosomiasis with snail latency, Theor. Popul. Biol., 10 (1976), 47-69. |
[19] |
I. Nåsell and W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure. Appl. Math., 26 (1973), 395-453. |
[20] |
E. M. T. Salvana and C. H. King, Schistosomiasis in travelers and immigrants, Current Infectious Disease Reports, 10 (2008), 42-49.
doi: 10.1007/s11908-008-0009-8. |
[21] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[22] |
World Health Organization, The control of schistosomiasis, Second report of the WHO Expert Committee, World Health Organ Tech Rep Ser., 830 (1993), 1-86. |
[23] |
J. Wu, N. Liu and S. Zuo, The qualitative analysis of model of the transmission dynamics of Japanese schistosomiasis, Applied Mathematics-A Journal of Chinese Universities, 2 (1987), 352-362. |
[24] |
J. Wu and Z. Feng, Mathematical models for schistosomiasis with delays and multiple definitive hosts, in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory" (Minneapolis, MN, 1999), IMA Vol. Math. Appl., 126, Springer, New York, (2002), 215-229. |
[25] |
H. M. Yang, Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water, Math. Biosci., 184 (2003), 1-26.
doi: 10.1016/S0025-5564(03)00045-2. |
[26] |
P. Zhang, Z. Feng and F. A. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies, Math. Biosci., 205 (2007), 83-107.
doi: 10.1016/j.mbs.2006.06.006. |
[27] |
X. Zhou, T. Wang and L. Wang, The current status of schistosomiasis epidemics in China (in Chinese), Zhonghua Liu Xing Bing Xue Za Zhi, 25 (2004), 555-558. |
show all references
References:
[1] |
J. Carr, "Applications of Centre Manifold Theory," Applied Mathematical Sciences, 35, Springer-Verlag, New York-Berlin, 1981. |
[2] |
C. Castillo-Chavez, Z. Feng and D. Xu, A schistosomiasis model with mating structure and time delay, Math. Biosci., 211 (2008), 333-341.
doi: 10.1016/j.mbs.2007.11.001. |
[3] |
S. N. Chow and J. K. Hale, "Methods of Bifurcation Theory," Grundlehren der Mathematischen Wissenschaften, 251, Springer-Verlag, New York-Berlin, 1982. |
[4] |
K. L. Cooke and P. van den Driessche, On zeros of some transcendental equations, Funkcial. Ekvac., 29 (1986), 77-90. |
[5] |
C. L. Cosgrove and V. R. Southgate, Mating interactions between Schistosoma mansoni and S. margrebowiei, Parasitology, 125 (2002), 233-243.
doi: 10.1017/S0031182002002111. |
[6] |
O. Diekmann and J. A. P. Heesterbeek, "Mathematical Epidemiology of Infectious Diseases. Model Building, Analysis and Interpretation," Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, Ltd., Chichester, 2000. |
[7] |
T. Faria, Normal forms and bifurcations for delay differential equations, in "Delay Differential Equations and Applications," NATO Science Series II: Mathematics, Physics and Chemistry, 205, Springer, Dordrecht, (2006), 227-282. |
[8] |
Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with density dependence and age of infection in snail dynamics, Math. Biosci., 177/178 (2002), 271-286.
doi: 10.1016/S0025-5564(01)00115-8. |
[9] |
Z. Feng, C.-C. Li and F. A. Milner, Schistosomiasis models with two migrating human groups, Math. Comput. Modelling., 41 (2005), 1213-1230.
doi: 10.1016/j.mcm.2004.10.023. |
[10] |
M. Golubitsky and D. G Schaeffer, "Singularities and Groups in Bifurcation Theory," Vol. I, Applied Mathematical Sciences, 51, Springer-Verlag, New York, 1985. |
[11] |
K. Gopalsamy, "Stability and Oscillations in Delay Differential Equations of Population Dynamics," Mathematics and its Applications, 74, Kluwer Academic Publishers Group, Dordrecht, 1992. |
[12] |
B. Gryseels, K. Polman, J. Clerinx and L. Kestens, Human schistosomiasis, The Lancet., 368 (2006), 1106-1118.
doi: 10.1016/S0140-6736(06)69440-3. |
[13] |
J. K. Hale, "Theory of Functional Differential Equations," Second edition, Applied Mathematical Sciences, Vol. 3, Springer-Verlag, New York-Heidelberg, 1977. |
[14] |
J. K. Hale and S. M. Lunel, "Introduction to Functional-Differential Equations," Applied Mathematical Sciences, 99, Springer-Verlag, New York, 1993. |
[15] |
B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, "Theory and Application of Hopf Bifurcation," London Mathematical Society Lecture Note Series, 41, Cambridge University Press, Cambridge-New York, 1981. |
[16] |
Y. Kuang, "Delay Differential Equations with Applications in Population Dynamics," Mathematics in Science and Engineering, 191, Academic Press, Inc., Boston, MA, 1993. |
[17] |
G. MacDonald, The dynamics of helminth infections with spatial reference to schistosomes, Trans. Roy. Soc. Trop. Med. Hyg., 59 (1965), 489-506.
doi: 10.1016/0035-9203(65)90152-5. |
[18] |
I. Nåsell, A hybrid model of schistosomiasis with snail latency, Theor. Popul. Biol., 10 (1976), 47-69. |
[19] |
I. Nåsell and W. M. Hirsch, The transmission dynamics of schistosomiasis, Comm. Pure. Appl. Math., 26 (1973), 395-453. |
[20] |
E. M. T. Salvana and C. H. King, Schistosomiasis in travelers and immigrants, Current Infectious Disease Reports, 10 (2008), 42-49.
doi: 10.1007/s11908-008-0009-8. |
[21] |
P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48.
doi: 10.1016/S0025-5564(02)00108-6. |
[22] |
World Health Organization, The control of schistosomiasis, Second report of the WHO Expert Committee, World Health Organ Tech Rep Ser., 830 (1993), 1-86. |
[23] |
J. Wu, N. Liu and S. Zuo, The qualitative analysis of model of the transmission dynamics of Japanese schistosomiasis, Applied Mathematics-A Journal of Chinese Universities, 2 (1987), 352-362. |
[24] |
J. Wu and Z. Feng, Mathematical models for schistosomiasis with delays and multiple definitive hosts, in "Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods, and Theory" (Minneapolis, MN, 1999), IMA Vol. Math. Appl., 126, Springer, New York, (2002), 215-229. |
[25] |
H. M. Yang, Comparison between schistosomiasis transmission modelings considering acquired immunity and age-structured contact pattern with infested water, Math. Biosci., 184 (2003), 1-26.
doi: 10.1016/S0025-5564(03)00045-2. |
[26] |
P. Zhang, Z. Feng and F. A. Milner, A schistosomiasis model with an age-structure in human hosts and its application to treatment strategies, Math. Biosci., 205 (2007), 83-107.
doi: 10.1016/j.mbs.2006.06.006. |
[27] |
X. Zhou, T. Wang and L. Wang, The current status of schistosomiasis epidemics in China (in Chinese), Zhonghua Liu Xing Bing Xue Za Zhi, 25 (2004), 555-558. |
[1] |
Rui Dilão, András Volford. Excitability in a model with a saddle-node homoclinic bifurcation. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 419-434. doi: 10.3934/dcdsb.2004.4.419 |
[2] |
Ping Liu, Junping Shi, Yuwen Wang. A double saddle-node bifurcation theorem. Communications on Pure and Applied Analysis, 2013, 12 (6) : 2923-2933. doi: 10.3934/cpaa.2013.12.2923 |
[3] |
Flaviano Battelli. Saddle-node bifurcation of homoclinic orbits in singular systems. Discrete and Continuous Dynamical Systems, 2001, 7 (1) : 203-218. doi: 10.3934/dcds.2001.7.203 |
[4] |
Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233 |
[5] |
Eric Benoît. Bifurcation delay - the case of the sequence: Stable focus - unstable focus - unstable node. Discrete and Continuous Dynamical Systems - S, 2009, 2 (4) : 911-929. doi: 10.3934/dcdss.2009.2.911 |
[6] |
Victoriano Carmona, Soledad Fernández-García, Antonio E. Teruel. Saddle-node of limit cycles in planar piecewise linear systems and applications. Discrete and Continuous Dynamical Systems, 2019, 39 (9) : 5275-5299. doi: 10.3934/dcds.2019215 |
[7] |
Ale Jan Homburg, Todd Young. Intermittency and Jakobson's theorem near saddle-node bifurcations. Discrete and Continuous Dynamical Systems, 2007, 17 (1) : 21-58. doi: 10.3934/dcds.2007.17.21 |
[8] |
W.-J. Beyn, Y.-K Zou. Discretizations of dynamical systems with a saddle-node homoclinic orbit. Discrete and Continuous Dynamical Systems, 1996, 2 (3) : 351-365. doi: 10.3934/dcds.1996.2.351 |
[9] |
Xiao-Biao Lin, Changrong Zhu. Saddle-node bifurcations of multiple homoclinic solutions in ODES. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1435-1460. doi: 10.3934/dcdsb.2017069 |
[10] |
Runxia Wang, Haihong Liu, Fang Yan, Xiaohui Wang. Hopf-pitchfork bifurcation analysis in a coupled FHN neurons model with delay. Discrete and Continuous Dynamical Systems - S, 2017, 10 (3) : 523-542. doi: 10.3934/dcdss.2017026 |
[11] |
Ryan T. Botts, Ale Jan Homburg, Todd R. Young. The Hopf bifurcation with bounded noise. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2997-3007. doi: 10.3934/dcds.2012.32.2997 |
[12] |
Matteo Franca, Russell Johnson, Victor Muñoz-Villarragut. On the nonautonomous Hopf bifurcation problem. Discrete and Continuous Dynamical Systems - S, 2016, 9 (4) : 1119-1148. doi: 10.3934/dcdss.2016045 |
[13] |
John Guckenheimer, Hinke M. Osinga. The singular limit of a Hopf bifurcation. Discrete and Continuous Dynamical Systems, 2012, 32 (8) : 2805-2823. doi: 10.3934/dcds.2012.32.2805 |
[14] |
Fabien Crauste. Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences & Engineering, 2006, 3 (2) : 325-346. doi: 10.3934/mbe.2006.3.325 |
[15] |
Hui Miao, Zhidong Teng, Chengjun Kang. Stability and Hopf bifurcation of an HIV infection model with saturation incidence and two delays. Discrete and Continuous Dynamical Systems - B, 2017, 22 (6) : 2365-2387. doi: 10.3934/dcdsb.2017121 |
[16] |
Majid Gazor, Mojtaba Moazeni. Parametric normal forms for Bogdanov--Takens singularity; the generalized saddle-node case. Discrete and Continuous Dynamical Systems, 2015, 35 (1) : 205-224. doi: 10.3934/dcds.2015.35.205 |
[17] |
Hooton Edward, Balanov Zalman, Krawcewicz Wieslaw, Rachinskii Dmitrii. Sliding Hopf bifurcation in interval systems. Discrete and Continuous Dynamical Systems, 2017, 37 (7) : 3545-3566. doi: 10.3934/dcds.2017152 |
[18] |
Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208 |
[19] |
Xiaoqin P. Wu, Liancheng Wang. Hopf bifurcation of a class of two coupled relaxation oscillators of the van der Pol type with delay. Discrete and Continuous Dynamical Systems - B, 2010, 13 (2) : 503-516. doi: 10.3934/dcdsb.2010.13.503 |
[20] |
Fang Han, Bin Zhen, Ying Du, Yanhong Zheng, Marian Wiercigroch. Global Hopf bifurcation analysis of a six-dimensional FitzHugh-Nagumo neural network with delay by a synchronized scheme. Discrete and Continuous Dynamical Systems - B, 2011, 16 (2) : 457-474. doi: 10.3934/dcdsb.2011.16.457 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]