-
Previous Article
Periodically forced discrete-time SIS epidemic model with disease induced mortality
- MBE Home
- This Issue
-
Next Article
Robustness of optimal controls for a class of mathematical models for tumor anti-angiogenesis
Tumor cells proliferation and migration under the influence of their microenvironment
1. | Department of Mathematics, Ohio State University, Columbus, OH 43210, United States |
2. | Department of Mathematics & Statistics, University of Michigan, Dearborn, MI 48128 |
References:
[1] |
K. Asano, C. D. Duntsch, Q. Zhou, J. D. Weimar, D. Bordelon, J. H. Robertson and T. Pourmotabbed, Correlation of n-cadherin expression in high grade gliomas with tissue invasion, J Neurooncol, 70 (2004), 3-15.
doi: 10.1023/B:NEON.0000040811.14908.f2. |
[2] |
S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells, J Cell Biol, 110 (1990), 1427-38.
doi: 10.1083/jcb.110.4.1427. |
[3] |
N. A. Bhowmick, E. G. Neilson and H. L. Moses, Stromal fibroblasts in cancer initiation and progression, Nature, 432 (2004), 332-7.
doi: 10.1038/nature03096. |
[4] |
E. Khain and L. M. Sander, Dynamics and pattern formation in invasive tumor growth, Phys. Rev. Lett., 96 (2006), 188103.
doi: 10.1103/PhysRevLett.96.188103. |
[5] |
Y. Kim and A. Friedman, Interaction of tumor with its microenvironment: A mathematical model, Bull. Math. Biol., 72 (2010), 1029-1068.
doi: 10.1007/s11538-009-9481-z. |
[6] |
Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: A mathematical model and experiments, J. Math. Biol., 61 (2010), 401-421.
doi: 10.1007/s00285-009-0307-2. |
[7] |
Y. Kim, S. Lawler, M. O. Nowicki, E. A Chiocca and A. Friedman, A mathematical model of brain tumor : Pattern formation of glioma cells outside the tumor spheroid core, Journal of Theoretical Biology, 260 (2009), 359-371.
doi: 10.1016/j.jtbi.2009.06.025. |
[8] |
G. Lolas, Mathematical modelling of proteolysis and cancer cell invasion of tissue, in "Tutorials in Mathematical Biosciences III," Springer Berlin/Heidelberg, (2006), 77-129. |
[9] |
M. M. Mueller and N. E. Fusenig, Friends or foes - bipolar effects of the tumour stroma in cancer, Nat Rev Cancer, 4 (2004), 839-49.
doi: 10.1038/nrc1477. |
[10] |
A. J. Perumpanani and H. M. Byrne, Extracellular matrix concentration exerts selection pressure on invasive cells, Eur. J. Cancer, 35 (1999), 1274-80.
doi: 10.1016/S0959-8049(99)00125-2. |
[11] |
M. Samoszuk, J. Tan and G. Chorn, Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts, Breast Cancer Res, 7 (2005), R274-R283.
doi: 10.1186/bcr995. |
[12] |
L. M. Sander and T. S. Deisboeck, Growth patterns of microscopic brain tumors, Phys. Rev. E, 66 (2002), 051901.
doi: 10.1103/PhysRevE.66.051901. |
[13] |
J. A. Sherratt and J. D. Murray, Models of epidermal wound healing, Proc. R. Soc. Lond., B241 (1990), 29-36.
doi: 10.1098/rspb.1990.0061. |
[14] |
A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment, Biophys. J., 92 (2007), 356-65.
doi: 10.1529/biophysj.106.093468. |
[15] |
K. R. Swanson, E. C. Alvord and J. D. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Prolif., 33 (2000), 317-29.
doi: 10.1046/j.1365-2184.2000.00177.x. |
[16] |
K. R. Swanson, E. C. Alvord and J. D. Murray, Virtual resection of gliomas: Effect of extent of resection on recurrence, Math. Comp. Modelling, 37 (2003), 1177-1190.
doi: 10.1016/S0895-7177(03)00129-8. |
[17] |
M. Yashiro, K. Ikeda, M. Tendo, T. Ishikawa and K. Hirakawa, Effect of organ-specific fibroblasts on proliferation and differentiation of breast cancer cells, Breast Cancer Res Treat, 90 (2005), 307-13.
doi: 10.1007/s10549-004-5364-z. |
[18] |
K. Yuan, R. K. Singh, G. Rezonzew and G. P. Siegal, Cell motility in cancer invasion and metastasis, in "Cancer Metastasis - Biology and Treatment," Springer, Netherlands, (2006), 25-54. |
show all references
References:
[1] |
K. Asano, C. D. Duntsch, Q. Zhou, J. D. Weimar, D. Bordelon, J. H. Robertson and T. Pourmotabbed, Correlation of n-cadherin expression in high grade gliomas with tissue invasion, J Neurooncol, 70 (2004), 3-15.
doi: 10.1023/B:NEON.0000040811.14908.f2. |
[2] |
S. Aznavoorian, M. L. Stracke, H. Krutzsch, E. Schiffmann and L. A. Liotta, Signal transduction for chemotaxis and haptotaxis by matrix molecules in tumor cells, J Cell Biol, 110 (1990), 1427-38.
doi: 10.1083/jcb.110.4.1427. |
[3] |
N. A. Bhowmick, E. G. Neilson and H. L. Moses, Stromal fibroblasts in cancer initiation and progression, Nature, 432 (2004), 332-7.
doi: 10.1038/nature03096. |
[4] |
E. Khain and L. M. Sander, Dynamics and pattern formation in invasive tumor growth, Phys. Rev. Lett., 96 (2006), 188103.
doi: 10.1103/PhysRevLett.96.188103. |
[5] |
Y. Kim and A. Friedman, Interaction of tumor with its microenvironment: A mathematical model, Bull. Math. Biol., 72 (2010), 1029-1068.
doi: 10.1007/s11538-009-9481-z. |
[6] |
Y. Kim, J. Wallace, F. Li, M. Ostrowski and A. Friedman, Transformed epithelial cells and fibroblasts/myofibroblasts interaction in breast tumor: A mathematical model and experiments, J. Math. Biol., 61 (2010), 401-421.
doi: 10.1007/s00285-009-0307-2. |
[7] |
Y. Kim, S. Lawler, M. O. Nowicki, E. A Chiocca and A. Friedman, A mathematical model of brain tumor : Pattern formation of glioma cells outside the tumor spheroid core, Journal of Theoretical Biology, 260 (2009), 359-371.
doi: 10.1016/j.jtbi.2009.06.025. |
[8] |
G. Lolas, Mathematical modelling of proteolysis and cancer cell invasion of tissue, in "Tutorials in Mathematical Biosciences III," Springer Berlin/Heidelberg, (2006), 77-129. |
[9] |
M. M. Mueller and N. E. Fusenig, Friends or foes - bipolar effects of the tumour stroma in cancer, Nat Rev Cancer, 4 (2004), 839-49.
doi: 10.1038/nrc1477. |
[10] |
A. J. Perumpanani and H. M. Byrne, Extracellular matrix concentration exerts selection pressure on invasive cells, Eur. J. Cancer, 35 (1999), 1274-80.
doi: 10.1016/S0959-8049(99)00125-2. |
[11] |
M. Samoszuk, J. Tan and G. Chorn, Clonogenic growth of human breast cancer cells co-cultured in direct contact with serum-activated fibroblasts, Breast Cancer Res, 7 (2005), R274-R283.
doi: 10.1186/bcr995. |
[12] |
L. M. Sander and T. S. Deisboeck, Growth patterns of microscopic brain tumors, Phys. Rev. E, 66 (2002), 051901.
doi: 10.1103/PhysRevE.66.051901. |
[13] |
J. A. Sherratt and J. D. Murray, Models of epidermal wound healing, Proc. R. Soc. Lond., B241 (1990), 29-36.
doi: 10.1098/rspb.1990.0061. |
[14] |
A. M. Stein, T. Demuth, D. Mobley, M. Berens and L. M. Sander, A mathematical model of glioblastoma tumor spheroid invasion in a three-dimensional in vitro experiment, Biophys. J., 92 (2007), 356-65.
doi: 10.1529/biophysj.106.093468. |
[15] |
K. R. Swanson, E. C. Alvord and J. D. Murray, A quantitative model for differential motility of gliomas in grey and white matter, Cell Prolif., 33 (2000), 317-29.
doi: 10.1046/j.1365-2184.2000.00177.x. |
[16] |
K. R. Swanson, E. C. Alvord and J. D. Murray, Virtual resection of gliomas: Effect of extent of resection on recurrence, Math. Comp. Modelling, 37 (2003), 1177-1190.
doi: 10.1016/S0895-7177(03)00129-8. |
[17] |
M. Yashiro, K. Ikeda, M. Tendo, T. Ishikawa and K. Hirakawa, Effect of organ-specific fibroblasts on proliferation and differentiation of breast cancer cells, Breast Cancer Res Treat, 90 (2005), 307-13.
doi: 10.1007/s10549-004-5364-z. |
[18] |
K. Yuan, R. K. Singh, G. Rezonzew and G. P. Siegal, Cell motility in cancer invasion and metastasis, in "Cancer Metastasis - Biology and Treatment," Springer, Netherlands, (2006), 25-54. |
[1] |
J. Ignacio Tello. On a mathematical model of tumor growth based on cancer stem cells. Mathematical Biosciences & Engineering, 2013, 10 (1) : 263-278. doi: 10.3934/mbe.2013.10.263 |
[2] |
Tiffany A. Jones, Lou Caccetta, Volker Rehbock. Optimisation modelling of cancer growth. Discrete and Continuous Dynamical Systems - B, 2017, 22 (1) : 115-123. doi: 10.3934/dcdsb.2017006 |
[3] |
Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687 |
[4] |
Urszula Ledzewicz, Heinz Schättler, Shuo Wang. On the role of tumor heterogeneity for optimal cancer chemotherapy. Networks and Heterogeneous Media, 2019, 14 (1) : 131-147. doi: 10.3934/nhm.2019007 |
[5] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[6] |
Rudolf Olach, Vincent Lučanský, Božena Dorociaková. The model of nutrients influence on the tumor growth. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2607-2619. doi: 10.3934/dcdsb.2021150 |
[7] |
Shuo Wang, Heinz Schättler. Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences & Engineering, 2016, 13 (6) : 1223-1240. doi: 10.3934/mbe.2016040 |
[8] |
Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar. The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences & Engineering, 2009, 6 (3) : 547-559. doi: 10.3934/mbe.2009.6.547 |
[9] |
Ebraheem O. Alzahrani, Yang Kuang. Nutrient limitations as an explanation of Gompertzian tumor growth. Discrete and Continuous Dynamical Systems - B, 2016, 21 (2) : 357-372. doi: 10.3934/dcdsb.2016.21.357 |
[10] |
Andrea Tosin. Multiphase modeling and qualitative analysis of the growth of tumor cords. Networks and Heterogeneous Media, 2008, 3 (1) : 43-83. doi: 10.3934/nhm.2008.3.43 |
[11] |
Shihe Xu. Analysis of a delayed free boundary problem for tumor growth. Discrete and Continuous Dynamical Systems - B, 2011, 15 (1) : 293-308. doi: 10.3934/dcdsb.2011.15.293 |
[12] |
Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth. Mathematical Biosciences & Engineering, 2015, 12 (6) : 1141-1156. doi: 10.3934/mbe.2015.12.1141 |
[13] |
Dongxi Li, Ni Zhang, Ming Yan, Yanya Xing. Survival analysis for tumor growth model with stochastic perturbation. Discrete and Continuous Dynamical Systems - B, 2021, 26 (10) : 5707-5722. doi: 10.3934/dcdsb.2021041 |
[14] |
Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete and Continuous Dynamical Systems - S, 2021, 14 (8) : 2729-2749. doi: 10.3934/dcdss.2020457 |
[15] |
Manuel Delgado, Ítalo Bruno Mendes Duarte, Antonio Suárez Fernández. Nonlocal elliptic system arising from the growth of cancer stem cells. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1767-1795. doi: 10.3934/dcdsb.2018083 |
[16] |
Evans K. Afenya, Calixto P. Calderón. Growth kinetics of cancer cells prior to detection and treatment: An alternative view. Discrete and Continuous Dynamical Systems - B, 2004, 4 (1) : 25-28. doi: 10.3934/dcdsb.2004.4.25 |
[17] |
Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete and Continuous Dynamical Systems - S, 2021, 14 (10) : 3419-3440. doi: 10.3934/dcdss.2020426 |
[18] |
Alexander P. Krishchenko, Konstantin E. Starkov. The four-dimensional Kirschner-Panetta type cancer model: How to obtain tumor eradication?. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1243-1254. doi: 10.3934/mbe.2018057 |
[19] |
K. E. Starkov, Svetlana Bunimovich-Mendrazitsky. Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences & Engineering, 2016, 13 (5) : 1059-1075. doi: 10.3934/mbe.2016030 |
[20] |
Shuo Wang, Heinz Schättler. Optimal control for cancer chemotherapy under tumor heterogeneity with Michealis-Menten pharmacodynamics. Discrete and Continuous Dynamical Systems - B, 2019, 24 (5) : 2383-2405. doi: 10.3934/dcdsb.2019100 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]