-
Previous Article
Bacteria--phagocyte dynamics, axiomatic modelling and mass-action kinetics
- MBE Home
- This Issue
-
Next Article
Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle
Preliminary analysis of an agent-based model for a tick-borne disease
1. | Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, United States |
References:
[1] |
Centers for Disease Control and Prevention, Summary of Notifiable Diseases - United States, 2006, MMWR, 55 (2008), 1-94. |
[2] |
D. E. Sonenshine and T. N. Mather, "Ecological Dynamics of Tick-Borne Zoonoses," Oxford University Press, 1994. |
[3] |
H. Gaff and L. J. Gross, Analysis of a tick-borne disease model with varying population sizes in various habitats, Bulletin of Mathematical Biology, 69 (2007), 265-288.
doi: 10.1007/s11538-006-9125-5. |
[4] |
H. Gaff and E. Schaefer, Metapopulation models in tick-borne disease transmission modelling, In "Modelling parasitic Disease Transmission: Biology to Control," eds. Michael, E. & Spear, R. Landes Bioscience, Eurekah: Austin, TX, USA, 2008. |
[5] |
H. Gaff, L. Gross and E. Schaefer, Results from a mathematical model for human monocytic ehrlichiosis, Proceedings of the 5th Conference on Rickettsiae and Rickettsial diseases, Supplement to Clinical Microbiology and Infection, 15 (2008), 1-2. |
[6] |
D. G. Haile and G. A. Mount, Computer simulation of population dynamics of the lone star tick, Amblyomma americanum (Acari: Ixodidae), Journal of Medical Entomology, 24 (1987), 356-369. |
[7] |
G. A. Mount and D. G. Haile, Computer simulation of population dynamics of the American dog tick (Acari: Ixodidae), Journal of Medical Entomology, 26 (1989), 60-76. |
[8] |
G. A. Mount, D. G. Haile, R. B. Davey and L. M. Cooksey, Computer simulation of boophilus cattle tick (Acari: Ixodidae) population dynamics, Journal of Medical Entomology, 28 (1991), 223-240. |
[9] |
G. A. Mount, D. G. Haile, D. R. Barnard and E. Daniels, New version of LSTSIM for computer simulation of Amblyomma americanum (Acari: Ixodidae) population dynamics, Journal of Medical Entomology, 30 (1993), 843-857. |
[10] |
G. A. Mount, D. G. Haile and E. Daniels, Simulation of blacklegged tick (Acari: Ixodidae) population dynamics and transmission of Borrelia burgdorferi, Journal of Medical Entomology, 34 (1997), 461-484. |
[11] |
G. A. Mount, D. G. Haile and E. Daniels, Simulation of management strategies for the blacklegged tick (Acari: Ixodidae) and the Lyme disease spirochete, Borrelia burgdorferi, Journal of Medical Entomology, 90 (1997), 672-683. |
[12] |
S. Sandberg, T. E. Awerbuch and A. Spielman, A comprehensive multiple matrix model representing the life cycle of the tick that transmits the age of Lyme disease, Journal of Theoretical Biology, 157 (1992), 203-220.
doi: 10.1016/S0022-5193(05)80621-6. |
[13] |
T. E. Awerbuch and S. Sandberg, Trends and oscillations in tick population dynamics, Journal of Theoretical Biology, 175 (1995), 511-516.
doi: 10.1006/jtbi.1995.0158. |
[14] |
S. Randolph, Epidemiological uses of a population model for the tick Rhipicephalus appendiculatus, Tropical Medicine and International Health, 4 (1999), A34-A42.
doi: 10.1046/j.1365-3156.1999.00449.x. |
[15] |
J. E. Bunnell, S. D. Price, A. Das, T. M. Shields and G. E. Glass, Geographic Information Systems and Spatial Analysis of Adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic Region of the U.S.A., Journal of Medical Entomology, 40 (2003), 570-576.
doi: 10.1603/0022-2585-40.4.570. |
[16] |
A. Das, S. R. Lele, G. E. Glass, T. Shields and J. Petz, Modelling a discrete spatial response using generalized linear mixed models: Application to Lyme disease vectors, International Journal of Geographical Information Science, 16 (2002), 151-166.
doi: 10.1080/13658810110099134. |
[17] |
G. E. Glass, B. S. Schwartz, J. M. Morgan, D. T. Johnson, P. M. Noy and E. Israel, Environmental risk factors for Lyme disease identified with geographic information systems, American Journal of Public Health, 85 (1995), 944-948.
doi: 10.2105/AJPH.85.7.944. |
[18] |
W. E. Fitzgibbon, M. E. Parrott and G. F. Webb, A diffusive epidemic model for a host-vector system, In "Differential Equations and Applications to Biology and Industry," M. Martelli, K. Cooke, E. Cumberbatch, B. Tang, and H. Thieme, (Eds.), World Scientific Press, Singapore, 1996. |
[19] |
J. Radcliffe and L. Rass, The spatial spread and final size of models for the deterministic host-vector epidemic, Mathematical Biosciences, 70 (1984), 123-146.
doi: 10.1016/0025-5564(84)90094-4. |
[20] |
J. Radcliffe and L. Rass, The rate of spread of infection in models for the deterministic host-vector epidemic, Mathematical Biosciences, 74 (1985), 257-273.
doi: 10.1016/0025-5564(85)90059-8. |
[21] |
A. R. Giardina, K. A. Schmidt, E. M. Schauber and R. S. Ostfeld, Modeling the role of songbirds and rodents in the ecology of Lyme disease, Canadian Journal of Zoology, 78 (2000), 2184-2197.
doi: 10.1139/cjz-78-12-2184. |
[22] |
K. LoGiudice, R. S. Ostfeld, K. A. Schmidt and F. Keesing, The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk, Proceedings of the National Academies of Science, USA, 100 (2003), 567-571. |
[23] |
M. Ghosh and A. Pugliese, Seasonal population dynamics of ticks, and its influence on infection transmission: A semi- discrete approach, Bulletin of Mathematical Biology, 66 (2004), 1659-1684.
doi: 10.1016/j.bulm.2004.03.007. |
[24] |
W. Ding, Optimal Control on Hybrid ODE Systems with Application to a Tick Disease Model, Mathematical Biosciences and Engineering, 4 (2007), 633-659. |
[25] |
D. L. DeAngelis and L. J. Gross, "Individual-based Models and Approaches in Ecology: Populations, Communities and Ecosystems," Taylor and Francis, 1992. |
[26] |
D. L. DeAngelis, L. J. Gross, W. F. Wolff, D. M. Fleming, M. P. Nott and E. J. Comiskey, Individual-based models on the landscape: Applications to the Everglades, in "Landscape Ecology: A Top-Down Approach," J. Sanderson and L. D. Harris (eds.), Lewis Publishers, Boca Raton, FL, 2000. |
[27] |
S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai and N. Wang, Modelling disease outbreaks in realistic urban social networks, Nature, 429 (2004), 180-184.
doi: 10.1038/nature02541. |
[28] |
A. G. Barbour, "Lyme Disease: The Cause, the Cure, the Controversy," John Hopkins University Press, Baltimore, Maryland, 1996. |
[29] |
F. Des Vignes, M. L. Levin and D. Fish, Comparative vector competence of Dermacentor variabilis and Ixodes scapularis (Acari: Ixodidae) for the agent of human granulocytic ehrlichiosis, Journal of Medical Entomology, 36 (1999), 182-185. |
[30] |
Dania Richter, Andrew Spielman, Nicholas Komar and Franz-Rainer Matuschka, Competence of American robins as reservoir hosts for Lyme disease spirochetes, Emerging Infectious Diseases, 6 (2000), 133-138.
doi: 10.3201/eid0602.000205. |
[31] |
V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. K. Heinz, G. Huse, A. Huth, J. U. Jepsen, C. Jørgensen, W. M. Mooij, B. Müller, G. Peer, C. Piou, S. F. Railsback, A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Rüger, E. Strand, S. Souissi, R. A. Stillman, R. Vabø, U. Visser and D. L. DeAngelis, A standard protocol for describing individual-based and agent-based models, Ecological Modelling 198 (2006), 115-26.
doi: 10.1016/j.ecolmodel.2006.04.023. |
[32] |
A. L. Bauer, C. A. A. Beauchemin and A. S. Perelson, Agent-based modeling of host-pathogen systems: The successes and the challenges, Information Sciences, 179 (2009), 1379-1389.
doi: 10.1016/j.ins.2008.11.012. |
[33] |
V. Grimm and S. F. Railsbeck, "Individual-based Modeling and Ecology," Princeton University Press, 2005. |
[34] |
J. M. Lockhart, W. R. Davidson, J. E. Dawson and D. E. Stallknecht, Temporal association of Amblyomma americanum with the presence of Ehrlichia chaffeensis reactive antibodies in white-tailed deer, Journal of Wildlife Diseases, 31 (1995), 119-124. |
[35] |
J. E. Dawson, J. E. Childs, K. L. Biggie, C. Moore, D. Stallknecht, J. Shaddock, J. Bouseman, E. Hofmeister and J. G. Olson, White-tailed deer as a potential reservoir of Ehrlichia spp., Journal of Wildlife Diseases, 30 (1994), 162-168. |
[36] |
B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs, J. F. Piesman, C. M. Happ, G. O. Maupin and B. J. B. Johnson, Amblyomma americanum: A potential vector of human ehrlichiosis, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239-244. |
show all references
References:
[1] |
Centers for Disease Control and Prevention, Summary of Notifiable Diseases - United States, 2006, MMWR, 55 (2008), 1-94. |
[2] |
D. E. Sonenshine and T. N. Mather, "Ecological Dynamics of Tick-Borne Zoonoses," Oxford University Press, 1994. |
[3] |
H. Gaff and L. J. Gross, Analysis of a tick-borne disease model with varying population sizes in various habitats, Bulletin of Mathematical Biology, 69 (2007), 265-288.
doi: 10.1007/s11538-006-9125-5. |
[4] |
H. Gaff and E. Schaefer, Metapopulation models in tick-borne disease transmission modelling, In "Modelling parasitic Disease Transmission: Biology to Control," eds. Michael, E. & Spear, R. Landes Bioscience, Eurekah: Austin, TX, USA, 2008. |
[5] |
H. Gaff, L. Gross and E. Schaefer, Results from a mathematical model for human monocytic ehrlichiosis, Proceedings of the 5th Conference on Rickettsiae and Rickettsial diseases, Supplement to Clinical Microbiology and Infection, 15 (2008), 1-2. |
[6] |
D. G. Haile and G. A. Mount, Computer simulation of population dynamics of the lone star tick, Amblyomma americanum (Acari: Ixodidae), Journal of Medical Entomology, 24 (1987), 356-369. |
[7] |
G. A. Mount and D. G. Haile, Computer simulation of population dynamics of the American dog tick (Acari: Ixodidae), Journal of Medical Entomology, 26 (1989), 60-76. |
[8] |
G. A. Mount, D. G. Haile, R. B. Davey and L. M. Cooksey, Computer simulation of boophilus cattle tick (Acari: Ixodidae) population dynamics, Journal of Medical Entomology, 28 (1991), 223-240. |
[9] |
G. A. Mount, D. G. Haile, D. R. Barnard and E. Daniels, New version of LSTSIM for computer simulation of Amblyomma americanum (Acari: Ixodidae) population dynamics, Journal of Medical Entomology, 30 (1993), 843-857. |
[10] |
G. A. Mount, D. G. Haile and E. Daniels, Simulation of blacklegged tick (Acari: Ixodidae) population dynamics and transmission of Borrelia burgdorferi, Journal of Medical Entomology, 34 (1997), 461-484. |
[11] |
G. A. Mount, D. G. Haile and E. Daniels, Simulation of management strategies for the blacklegged tick (Acari: Ixodidae) and the Lyme disease spirochete, Borrelia burgdorferi, Journal of Medical Entomology, 90 (1997), 672-683. |
[12] |
S. Sandberg, T. E. Awerbuch and A. Spielman, A comprehensive multiple matrix model representing the life cycle of the tick that transmits the age of Lyme disease, Journal of Theoretical Biology, 157 (1992), 203-220.
doi: 10.1016/S0022-5193(05)80621-6. |
[13] |
T. E. Awerbuch and S. Sandberg, Trends and oscillations in tick population dynamics, Journal of Theoretical Biology, 175 (1995), 511-516.
doi: 10.1006/jtbi.1995.0158. |
[14] |
S. Randolph, Epidemiological uses of a population model for the tick Rhipicephalus appendiculatus, Tropical Medicine and International Health, 4 (1999), A34-A42.
doi: 10.1046/j.1365-3156.1999.00449.x. |
[15] |
J. E. Bunnell, S. D. Price, A. Das, T. M. Shields and G. E. Glass, Geographic Information Systems and Spatial Analysis of Adult Ixodes scapularis (Acari: Ixodidae) in the Middle Atlantic Region of the U.S.A., Journal of Medical Entomology, 40 (2003), 570-576.
doi: 10.1603/0022-2585-40.4.570. |
[16] |
A. Das, S. R. Lele, G. E. Glass, T. Shields and J. Petz, Modelling a discrete spatial response using generalized linear mixed models: Application to Lyme disease vectors, International Journal of Geographical Information Science, 16 (2002), 151-166.
doi: 10.1080/13658810110099134. |
[17] |
G. E. Glass, B. S. Schwartz, J. M. Morgan, D. T. Johnson, P. M. Noy and E. Israel, Environmental risk factors for Lyme disease identified with geographic information systems, American Journal of Public Health, 85 (1995), 944-948.
doi: 10.2105/AJPH.85.7.944. |
[18] |
W. E. Fitzgibbon, M. E. Parrott and G. F. Webb, A diffusive epidemic model for a host-vector system, In "Differential Equations and Applications to Biology and Industry," M. Martelli, K. Cooke, E. Cumberbatch, B. Tang, and H. Thieme, (Eds.), World Scientific Press, Singapore, 1996. |
[19] |
J. Radcliffe and L. Rass, The spatial spread and final size of models for the deterministic host-vector epidemic, Mathematical Biosciences, 70 (1984), 123-146.
doi: 10.1016/0025-5564(84)90094-4. |
[20] |
J. Radcliffe and L. Rass, The rate of spread of infection in models for the deterministic host-vector epidemic, Mathematical Biosciences, 74 (1985), 257-273.
doi: 10.1016/0025-5564(85)90059-8. |
[21] |
A. R. Giardina, K. A. Schmidt, E. M. Schauber and R. S. Ostfeld, Modeling the role of songbirds and rodents in the ecology of Lyme disease, Canadian Journal of Zoology, 78 (2000), 2184-2197.
doi: 10.1139/cjz-78-12-2184. |
[22] |
K. LoGiudice, R. S. Ostfeld, K. A. Schmidt and F. Keesing, The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk, Proceedings of the National Academies of Science, USA, 100 (2003), 567-571. |
[23] |
M. Ghosh and A. Pugliese, Seasonal population dynamics of ticks, and its influence on infection transmission: A semi- discrete approach, Bulletin of Mathematical Biology, 66 (2004), 1659-1684.
doi: 10.1016/j.bulm.2004.03.007. |
[24] |
W. Ding, Optimal Control on Hybrid ODE Systems with Application to a Tick Disease Model, Mathematical Biosciences and Engineering, 4 (2007), 633-659. |
[25] |
D. L. DeAngelis and L. J. Gross, "Individual-based Models and Approaches in Ecology: Populations, Communities and Ecosystems," Taylor and Francis, 1992. |
[26] |
D. L. DeAngelis, L. J. Gross, W. F. Wolff, D. M. Fleming, M. P. Nott and E. J. Comiskey, Individual-based models on the landscape: Applications to the Everglades, in "Landscape Ecology: A Top-Down Approach," J. Sanderson and L. D. Harris (eds.), Lewis Publishers, Boca Raton, FL, 2000. |
[27] |
S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A. Srinivasan, Z. Toroczkai and N. Wang, Modelling disease outbreaks in realistic urban social networks, Nature, 429 (2004), 180-184.
doi: 10.1038/nature02541. |
[28] |
A. G. Barbour, "Lyme Disease: The Cause, the Cure, the Controversy," John Hopkins University Press, Baltimore, Maryland, 1996. |
[29] |
F. Des Vignes, M. L. Levin and D. Fish, Comparative vector competence of Dermacentor variabilis and Ixodes scapularis (Acari: Ixodidae) for the agent of human granulocytic ehrlichiosis, Journal of Medical Entomology, 36 (1999), 182-185. |
[30] |
Dania Richter, Andrew Spielman, Nicholas Komar and Franz-Rainer Matuschka, Competence of American robins as reservoir hosts for Lyme disease spirochetes, Emerging Infectious Diseases, 6 (2000), 133-138.
doi: 10.3201/eid0602.000205. |
[31] |
V. Grimm, U. Berger, F. Bastiansen, S. Eliassen, V. Ginot, J. Giske, J. Goss-Custard, T. Grand, S. K. Heinz, G. Huse, A. Huth, J. U. Jepsen, C. Jørgensen, W. M. Mooij, B. Müller, G. Peer, C. Piou, S. F. Railsback, A. M. Robbins, M. M. Robbins, E. Rossmanith, N. Rüger, E. Strand, S. Souissi, R. A. Stillman, R. Vabø, U. Visser and D. L. DeAngelis, A standard protocol for describing individual-based and agent-based models, Ecological Modelling 198 (2006), 115-26.
doi: 10.1016/j.ecolmodel.2006.04.023. |
[32] |
A. L. Bauer, C. A. A. Beauchemin and A. S. Perelson, Agent-based modeling of host-pathogen systems: The successes and the challenges, Information Sciences, 179 (2009), 1379-1389.
doi: 10.1016/j.ins.2008.11.012. |
[33] |
V. Grimm and S. F. Railsbeck, "Individual-based Modeling and Ecology," Princeton University Press, 2005. |
[34] |
J. M. Lockhart, W. R. Davidson, J. E. Dawson and D. E. Stallknecht, Temporal association of Amblyomma americanum with the presence of Ehrlichia chaffeensis reactive antibodies in white-tailed deer, Journal of Wildlife Diseases, 31 (1995), 119-124. |
[35] |
J. E. Dawson, J. E. Childs, K. L. Biggie, C. Moore, D. Stallknecht, J. Shaddock, J. Bouseman, E. Hofmeister and J. G. Olson, White-tailed deer as a potential reservoir of Ehrlichia spp., Journal of Wildlife Diseases, 30 (1994), 162-168. |
[36] |
B. E. Anderson, K. G. Sims, J. G. Olson, J. E. Childs, J. F. Piesman, C. M. Happ, G. O. Maupin and B. J. B. Johnson, Amblyomma americanum: A potential vector of human ehrlichiosis, American Journal of Tropical Medicine and Hygiene, 49 (1993), 239-244. |
[1] |
Shangbing Ai. Global stability of equilibria in a tick-borne disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 567-572. doi: 10.3934/mbe.2007.4.567 |
[2] |
Yijun Lou, Li Liu, Daozhou Gao. Modeling co-infection of Ixodes tick-borne pathogens. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1301-1316. doi: 10.3934/mbe.2017067 |
[3] |
Holly Gaff, Robyn Nadolny. Identifying requirements for the invasion of a tick species and tick-borne pathogen through TICKSIM. Mathematical Biosciences & Engineering, 2013, 10 (3) : 625-635. doi: 10.3934/mbe.2013.10.625 |
[4] |
Gianluca D'Antonio, Paul Macklin, Luigi Preziosi. An agent-based model for elasto-plastic mechanical interactions between cells, basement membrane and extracellular matrix. Mathematical Biosciences & Engineering, 2013, 10 (1) : 75-101. doi: 10.3934/mbe.2013.10.75 |
[5] |
Wandi Ding. Optimal control on hybrid ODE Systems with application to a tick disease model. Mathematical Biosciences & Engineering, 2007, 4 (4) : 633-659. doi: 10.3934/mbe.2007.4.633 |
[6] |
Dieter Armbruster, Christian Ringhofer, Andrea Thatcher. A kinetic model for an agent based market simulation. Networks and Heterogeneous Media, 2015, 10 (3) : 527-542. doi: 10.3934/nhm.2015.10.527 |
[7] |
Xia Wang, Yuming Chen. An age-structured vector-borne disease model with horizontal transmission in the host. Mathematical Biosciences & Engineering, 2018, 15 (5) : 1099-1116. doi: 10.3934/mbe.2018049 |
[8] |
A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909 |
[9] |
Zhongqiang Wu, Zongkui Xie. A multi-objective lion swarm optimization based on multi-agent. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022001 |
[10] |
Prateek Kunwar, Oleksandr Markovichenko, Monique Chyba, Yuriy Mileyko, Alice Koniges, Thomas Lee. A study of computational and conceptual complexities of compartment and agent based models. Networks and Heterogeneous Media, 2022, 17 (3) : 359-384. doi: 10.3934/nhm.2022011 |
[11] |
Mahin Salmani, P. van den Driessche. A model for disease transmission in a patchy environment. Discrete and Continuous Dynamical Systems - B, 2006, 6 (1) : 185-202. doi: 10.3934/dcdsb.2006.6.185 |
[12] |
Peter J. Witbooi, Grant E. Muller, Marshall B. Ongansie, Ibrahim H. I. Ahmed, Kazeem O. Okosun. A stochastic population model of cholera disease. Discrete and Continuous Dynamical Systems - S, 2022, 15 (2) : 441-456. doi: 10.3934/dcdss.2021116 |
[13] |
Surabhi Pandey, Ezio Venturino. A TB model: Is disease eradication possible in India?. Mathematical Biosciences & Engineering, 2018, 15 (1) : 233-254. doi: 10.3934/mbe.2018010 |
[14] |
Fred Brauer. A model for an SI disease in an age - structured population. Discrete and Continuous Dynamical Systems - B, 2002, 2 (2) : 257-264. doi: 10.3934/dcdsb.2002.2.257 |
[15] |
Ionel S. Ciuperca, Matthieu Dumont, Abdelkader Lakmeche, Pauline Mazzocco, Laurent Pujo-Menjouet, Human Rezaei, Léon M. Tine. Alzheimer's disease and prion: An in vitro mathematical model. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5225-5260. doi: 10.3934/dcdsb.2019057 |
[16] |
Seung-Yeal Ha, Dohyun Kim, Jaeseung Lee, Se Eun Noh. Emergent dynamics of an orientation flocking model for multi-agent system. Discrete and Continuous Dynamical Systems, 2020, 40 (4) : 2037-2060. doi: 10.3934/dcds.2020105 |
[17] |
Stephen A. Gourley, Xiulan Lai, Junping Shi, Wendi Wang, Yanyu Xiao, Xingfu Zou. Role of white-tailed deer in geographic spread of the black-legged tick Ixodes scapularis : Analysis of a spatially nonlocal model. Mathematical Biosciences & Engineering, 2018, 15 (4) : 1033-1054. doi: 10.3934/mbe.2018046 |
[18] |
Zhiyong Sun, Toshiharu Sugie. Identification of Hessian matrix in distributed gradient-based multi-agent coordination control systems. Numerical Algebra, Control and Optimization, 2019, 9 (3) : 297-318. doi: 10.3934/naco.2019020 |
[19] |
Ovide Arino, Manuel Delgado, Mónica Molina-Becerra. Asymptotic behavior of disease-free equilibriums of an age-structured predator-prey model with disease in the prey. Discrete and Continuous Dynamical Systems - B, 2004, 4 (3) : 501-515. doi: 10.3934/dcdsb.2004.4.501 |
[20] |
W. E. Fitzgibbon, J. J. Morgan. Analysis of a reaction diffusion model for a reservoir supported spread of infectious disease. Discrete and Continuous Dynamical Systems - B, 2019, 24 (11) : 6239-6259. doi: 10.3934/dcdsb.2019137 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]