-
Previous Article
On some models for cancer cell migration through tissue networks
- MBE Home
- This Issue
-
Next Article
Glucose level regulation via integral high-order sliding modes
Modelling seasonal influenza in Israel
1. | Biomathematics Unit, Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel, Israel, Israel, Israel |
References:
[1] |
V. Andreasen, J. Lin and S. A. Levin, The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. Math. Biol., 35 (1997), 825-842.
doi: 10.1007/s002850050079. |
[2] |
J. J, Cannell, R. Vieth, J. C. Umhau, M. F. Holick, W. B. Grant, S. Madronich, C. F. Garland and E Giovannucci, Epidemic influenza and vitamin D, Epidemiol. Infect., 134 (2006), 1129-1140. |
[3] |
N. J Cox and K. Subbarao, Global epidemiology of influenza: Past and present, Annu. Rev. Med., 51 (2000), 407-421.
doi: 10.1146/annurev.med.51.1.407. |
[4] |
O. Diekmann and J. Hesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation," 1st edition, Wiley, New York, 2000. |
[5] |
N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452.
doi: 10.1038/nature04795. |
[6] |
M. J. Ferrari, O. N. Bjórnstad and A. P. Dobson, Estimation and inference of $R_0$ of an infectious pathogen by a removal method, Math. Biosci., 198 (2005), 14-26.
doi: 10.1016/j.mbs.2005.08.002. |
[7] |
P. E. M Fine and J. A. Clarkson, Measles in England and Wales-I: An Analysis of Factors Underlying Seasonal Patterns, Int. J. Epidemiol., 11 (1982), 5-14.
doi: 10.1093/ije/11.1.5. |
[8] |
B. S Finkelman, C. Viboud, K. Koelle, M. J. Ferrari, N. Bharti and B. T. Grenfell, Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral Coexistence and Latitudinal Gradients, PLoS ONE, 2 (2007), e1296.
doi: 10.1371/journal.pone.0001296. |
[9] |
T. C. Germann, K. Kadau, I. M. Longini, Jr. and C. A. Macken, Mitigation strategies for pandemic influenza in the United States, PNAS, 103 (2006), 5935-5940.
doi: i:10.1073/pnas.0601266103. |
[10] |
H. Heesterbeek, The law of mass-action in epidemiology: A historical perspective, in "Ecological Paradigms Lost - Routes of Theory Change" (eds. K. Cuddington and B. Beisner), Academic Press, 2005, 81-105. |
[11] |
A. D. Heymann, I. Hoch, L. Valinsky, E. Kokia and D. M. Steinberg, School Closure May Be Effective In Reducing Transmission Of Respiratory Viruses In The Community, Epidemiol. Infect., 137 (2009), 1369-1376.
doi: 10.1017/S0950268809002556. |
[12] |
G. Katriel and L. Stone, Pandemic dynamics and the breakdown of herd immunity, PLoS ONE, 5 (2010), e9565.
doi: 10.1371/journal.pone.0009565. |
[13] |
G. Katriel, R. Yaari, A. Huppert, U. Roll and L. Stone, Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study, J. R. Soc., Preprint.
doi: 10.1098/rsif.2010.0515. |
[14] |
E. D. Kilbourne and J. L. Schulman, Airborne transmission of influenza virus infection in mice, Nature, 195 (1961), 1129-1130. |
[15] |
J. D. Mathews, C. T. McCaw, J. McVernon, E. S. McBryde and J. M. McCaw, A biological model for influenza transmission: Pandemic planning implications of asymptomatic infection and immunity, PLoS ONE, 2 (2007), e1220.
doi: 10.1371/journal.pone.0001220. |
[16] |
Anne Moscona, Neuraminidase inhibitors for influenza, N. Engl. J. Med., 353 (2005), 1363-1373.
doi: 10.1056/NEJMra050740. |
[17] |
J.S. Nguyen-Van-Tam, Epidemiology of influenza, in "Textbook of Influenza" (eds. K.G Nicholson, R.G. Webster and A.J. Hay), Malden: Blackwell Science, 1998, 181-206. |
[18] |
K. G. Nicholson, J. M. Wood and M. Zambon, Influenza, Lancet, 362 (2003), 1733-1745.
doi: 10.1016/S0140-6736(03)14854-4. |
[19] |
R. Olinky, A. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008), 827-839.
doi: 10.1007/s00285-007-0140-4. |
[20] |
Christopher W. Potter, A history of influenza, J. Appl. Microbiol., 91 (2001), 572-579. |
[21] |
C. A. Russell, T. C. Jones, I. G. Barr, N. J. Cox, R. J. Garten, V. Gregory, I. D. Gust, A. W. Hampson, A. J. Hay, A. C. Hurt, J. C. de Jong, A. Kelso, A. I. Klimov, T. Kageyama, N. Komadina, A. S. Lapedes, Y. P. Lin, A. Mosterin, M. Obuchi, T. Odagiri, A. D. M. E. Osterhaus, G. F. Rimmelzwaan, M. W. Shaw, E. Skepner, K. Stohr, M. Tashiro, R. A. M. Fouchier and D. J. Smith, The global circulation of of seasonal Influenza A (H3N2) viruses, Science, 320 (2008), 340-346.
doi: 10.1126/science.1154137. |
[22] |
D. J. Smith, A. S. Lapedes, J. C. de Jong, T. M. Bestebroer, G. F. Rimmelzwaan, A. D. M. E. Osterhaus and R. A. M. Fouchier, Mapping the Antigenic and Genetic Evolution of Influenza Virus, Science, 305 (2004), 371-376.
doi: 10.1126/science.1097211. |
[23] |
H. E. Soper, The interpretation of periodicity in disease prevalence, J. R. Stat. Soc., 92 (1929), 34-73.
doi: 10.2307/2341437. |
[24] |
L. Stone, R. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536.
doi: 10.1038/nature05638. |
[25] |
R. J. Webby and R. G Webster, Are We Ready for Pandemic Influenza?, Science, 302 (2003), 1519-1522.
doi: 10.1126/science.1090350. |
show all references
References:
[1] |
V. Andreasen, J. Lin and S. A. Levin, The dynamics of cocirculating influenza strains conferring partial cross-immunity, J. Math. Biol., 35 (1997), 825-842.
doi: 10.1007/s002850050079. |
[2] |
J. J, Cannell, R. Vieth, J. C. Umhau, M. F. Holick, W. B. Grant, S. Madronich, C. F. Garland and E Giovannucci, Epidemic influenza and vitamin D, Epidemiol. Infect., 134 (2006), 1129-1140. |
[3] |
N. J Cox and K. Subbarao, Global epidemiology of influenza: Past and present, Annu. Rev. Med., 51 (2000), 407-421.
doi: 10.1146/annurev.med.51.1.407. |
[4] |
O. Diekmann and J. Hesterbeek, "Mathematical Epidemiology of Infectious Diseases: Model Building, Analysis and Interpretation," 1st edition, Wiley, New York, 2000. |
[5] |
N. M. Ferguson, D. A. T. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley and D. S. Burke, Strategies for mitigating an influenza pandemic, Nature, 442 (2006), 448-452.
doi: 10.1038/nature04795. |
[6] |
M. J. Ferrari, O. N. Bjórnstad and A. P. Dobson, Estimation and inference of $R_0$ of an infectious pathogen by a removal method, Math. Biosci., 198 (2005), 14-26.
doi: 10.1016/j.mbs.2005.08.002. |
[7] |
P. E. M Fine and J. A. Clarkson, Measles in England and Wales-I: An Analysis of Factors Underlying Seasonal Patterns, Int. J. Epidemiol., 11 (1982), 5-14.
doi: 10.1093/ije/11.1.5. |
[8] |
B. S Finkelman, C. Viboud, K. Koelle, M. J. Ferrari, N. Bharti and B. T. Grenfell, Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral Coexistence and Latitudinal Gradients, PLoS ONE, 2 (2007), e1296.
doi: 10.1371/journal.pone.0001296. |
[9] |
T. C. Germann, K. Kadau, I. M. Longini, Jr. and C. A. Macken, Mitigation strategies for pandemic influenza in the United States, PNAS, 103 (2006), 5935-5940.
doi: i:10.1073/pnas.0601266103. |
[10] |
H. Heesterbeek, The law of mass-action in epidemiology: A historical perspective, in "Ecological Paradigms Lost - Routes of Theory Change" (eds. K. Cuddington and B. Beisner), Academic Press, 2005, 81-105. |
[11] |
A. D. Heymann, I. Hoch, L. Valinsky, E. Kokia and D. M. Steinberg, School Closure May Be Effective In Reducing Transmission Of Respiratory Viruses In The Community, Epidemiol. Infect., 137 (2009), 1369-1376.
doi: 10.1017/S0950268809002556. |
[12] |
G. Katriel and L. Stone, Pandemic dynamics and the breakdown of herd immunity, PLoS ONE, 5 (2010), e9565.
doi: 10.1371/journal.pone.0009565. |
[13] |
G. Katriel, R. Yaari, A. Huppert, U. Roll and L. Stone, Modelling the initial phase of an epidemic using incidence and infection network data: 2009 H1N1 pandemic in Israel as a case study, J. R. Soc., Preprint.
doi: 10.1098/rsif.2010.0515. |
[14] |
E. D. Kilbourne and J. L. Schulman, Airborne transmission of influenza virus infection in mice, Nature, 195 (1961), 1129-1130. |
[15] |
J. D. Mathews, C. T. McCaw, J. McVernon, E. S. McBryde and J. M. McCaw, A biological model for influenza transmission: Pandemic planning implications of asymptomatic infection and immunity, PLoS ONE, 2 (2007), e1220.
doi: 10.1371/journal.pone.0001220. |
[16] |
Anne Moscona, Neuraminidase inhibitors for influenza, N. Engl. J. Med., 353 (2005), 1363-1373.
doi: 10.1056/NEJMra050740. |
[17] |
J.S. Nguyen-Van-Tam, Epidemiology of influenza, in "Textbook of Influenza" (eds. K.G Nicholson, R.G. Webster and A.J. Hay), Malden: Blackwell Science, 1998, 181-206. |
[18] |
K. G. Nicholson, J. M. Wood and M. Zambon, Influenza, Lancet, 362 (2003), 1733-1745.
doi: 10.1016/S0140-6736(03)14854-4. |
[19] |
R. Olinky, A. Huppert and L. Stone, Seasonal dynamics and thresholds governing recurrent epidemics, J. Math. Biol., 56 (2008), 827-839.
doi: 10.1007/s00285-007-0140-4. |
[20] |
Christopher W. Potter, A history of influenza, J. Appl. Microbiol., 91 (2001), 572-579. |
[21] |
C. A. Russell, T. C. Jones, I. G. Barr, N. J. Cox, R. J. Garten, V. Gregory, I. D. Gust, A. W. Hampson, A. J. Hay, A. C. Hurt, J. C. de Jong, A. Kelso, A. I. Klimov, T. Kageyama, N. Komadina, A. S. Lapedes, Y. P. Lin, A. Mosterin, M. Obuchi, T. Odagiri, A. D. M. E. Osterhaus, G. F. Rimmelzwaan, M. W. Shaw, E. Skepner, K. Stohr, M. Tashiro, R. A. M. Fouchier and D. J. Smith, The global circulation of of seasonal Influenza A (H3N2) viruses, Science, 320 (2008), 340-346.
doi: 10.1126/science.1154137. |
[22] |
D. J. Smith, A. S. Lapedes, J. C. de Jong, T. M. Bestebroer, G. F. Rimmelzwaan, A. D. M. E. Osterhaus and R. A. M. Fouchier, Mapping the Antigenic and Genetic Evolution of Influenza Virus, Science, 305 (2004), 371-376.
doi: 10.1126/science.1097211. |
[23] |
H. E. Soper, The interpretation of periodicity in disease prevalence, J. R. Stat. Soc., 92 (1929), 34-73.
doi: 10.2307/2341437. |
[24] |
L. Stone, R. Olinky and A. Huppert, Seasonal dynamics of recurrent epidemics, Nature, 446 (2007), 533-536.
doi: 10.1038/nature05638. |
[25] |
R. J. Webby and R. G Webster, Are We Ready for Pandemic Influenza?, Science, 302 (2003), 1519-1522.
doi: 10.1126/science.1090350. |
[1] |
Nicolas Bacaër, Xamxinur Abdurahman, Jianli Ye, Pierre Auger. On the basic reproduction number $R_0$ in sexual activity models for HIV/AIDS epidemics: Example from Yunnan, China. Mathematical Biosciences & Engineering, 2007, 4 (4) : 595-607. doi: 10.3934/mbe.2007.4.595 |
[2] |
Gerardo Chowell, R. Fuentes, A. Olea, X. Aguilera, H. Nesse, J. M. Hyman. The basic reproduction number $R_0$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences & Engineering, 2013, 10 (5&6) : 1455-1474. doi: 10.3934/mbe.2013.10.1455 |
[3] |
Timothy C. Reluga, Jan Medlock, Alison Galvani. The discounted reproductive number for epidemiology. Mathematical Biosciences & Engineering, 2009, 6 (2) : 377-393. doi: 10.3934/mbe.2009.6.377 |
[4] |
Benjamin H. Singer, Denise E. Kirschner. Influence of backward bifurcation on interpretation of $R_0$ in a model of epidemic tuberculosis with reinfection. Mathematical Biosciences & Engineering, 2004, 1 (1) : 81-93. doi: 10.3934/mbe.2004.1.81 |
[5] |
Toshikazu Kuniya, Mimmo Iannelli. $R_0$ and the global behavior of an age-structured SIS epidemic model with periodicity and vertical transmission. Mathematical Biosciences & Engineering, 2014, 11 (4) : 929-945. doi: 10.3934/mbe.2014.11.929 |
[6] |
Cameron J. Browne, Sergei S. Pilyugin. Minimizing $\mathcal R_0$ for in-host virus model with periodic combination antiviral therapy. Discrete and Continuous Dynamical Systems - B, 2016, 21 (10) : 3315-3330. doi: 10.3934/dcdsb.2016099 |
[7] |
Hisashi Inaba. The Malthusian parameter and $R_0$ for heterogeneous populations in periodic environments. Mathematical Biosciences & Engineering, 2012, 9 (2) : 313-346. doi: 10.3934/mbe.2012.9.313 |
[8] |
Christine K. Yang, Fred Brauer. Calculation of $R_0$ for age-of-infection models. Mathematical Biosciences & Engineering, 2008, 5 (3) : 585-599. doi: 10.3934/mbe.2008.5.585 |
[9] |
Tianhui Yang, Ammar Qarariyah, Qigui Yang. The effect of spatial variables on the basic reproduction ratio for a reaction-diffusion epidemic model. Discrete and Continuous Dynamical Systems - B, 2022, 27 (6) : 3005-3017. doi: 10.3934/dcdsb.2021170 |
[10] |
Xinli Hu. Threshold dynamics for a Tuberculosis model with seasonality. Mathematical Biosciences & Engineering, 2012, 9 (1) : 111-122. doi: 10.3934/mbe.2012.9.111 |
[11] |
Scott W. Hansen. Controllability of a basic cochlea model. Evolution Equations and Control Theory, 2016, 5 (4) : 475-487. doi: 10.3934/eect.2016015 |
[12] |
Wenjing Wu, Tianli Jiang, Weiwei Liu, Jinliang Wang. Threshold dynamics of a reaction-diffusion cholera model with seasonality and nonlocal delay. Communications on Pure and Applied Analysis, , () : -. doi: 10.3934/cpaa.2022099 |
[13] |
Leonid A. Bunimovich. Dynamical systems and operations research: A basic model. Discrete and Continuous Dynamical Systems - B, 2001, 1 (2) : 209-218. doi: 10.3934/dcdsb.2001.1.209 |
[14] |
Julien Arino, K.L. Cooke, P. van den Driessche, J. Velasco-Hernández. An epidemiology model that includes a leaky vaccine with a general waning function. Discrete and Continuous Dynamical Systems - B, 2004, 4 (2) : 479-495. doi: 10.3934/dcdsb.2004.4.479 |
[15] |
Mudassar Imran, Mohamed Ben-Romdhane, Ali R. Ansari, Helmi Temimi. Numerical study of an influenza epidemic dynamical model with diffusion. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2761-2787. doi: 10.3934/dcdss.2020168 |
[16] |
Bruno Buonomo, Giuseppe Carbone, Alberto d'Onofrio. Effect of seasonality on the dynamics of an imitation-based vaccination model with public health intervention. Mathematical Biosciences & Engineering, 2018, 15 (1) : 299-321. doi: 10.3934/mbe.2018013 |
[17] |
M. Guru Prem Prasad, Tarakanta Nayak. Dynamics of { $\lambda tanh(e^z): \lambda \in R$\ ${ 0 }$ }. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 121-138. doi: 10.3934/dcds.2007.19.121 |
[18] |
Soohyun Bae. On the elliptic equation Δu+K up = 0 in $\mathbb{R}$n. Discrete and Continuous Dynamical Systems, 2013, 33 (2) : 555-577. doi: 10.3934/dcds.2013.33.555 |
[19] |
John Cleveland. Basic stage structure measure valued evolutionary game model. Mathematical Biosciences & Engineering, 2015, 12 (2) : 291-310. doi: 10.3934/mbe.2015.12.291 |
[20] |
Dennis L. Chao, Dobromir T. Dimitrov. Seasonality and the effectiveness of mass vaccination. Mathematical Biosciences & Engineering, 2016, 13 (2) : 249-259. doi: 10.3934/mbe.2015001 |
2018 Impact Factor: 1.313
Tools
Metrics
Other articles
by authors
[Back to Top]